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Abstract

The objectives of this paper are to study the rank properties of flows of hybrid systems,

show that they are fundamentally different from those of smooth dynamical systems, and

to consider applications that emphasize the importance of these differences. It is well

known that the flow of a smooth dynamical system has rank equal to the space on which

it evolves. We prove that, in contrast, the rank of a solution to a hybrid system, a hybrid

execution, is always less than the dimension of the space on which it evolves and in fact

falls within possibly distinct upper and lower bounds that can be computed explicitly.

The main contribution of this work is the derivation of conditions for when an execution

fails to have maximal rank, i.e., when it is rank deficient. Given the importance of

periodic behavior in many hybrid systems applications, for example in bipedal robots,

these conditions are applied to the special case of periodic hybrid executions. Finally,

we use the rank deficiency conditions to derive superstability conditions describing when

periodic executions have rank equal to 0, that is, we determine when the execution is

completely insensitive to perturbations in initial conditions. The results of this paper are

illustrated on three separate applications, two of which are models of bipedal walking

robots: the classical single-domain planar compass biped and the two-domain planar

kneed biped.
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1. Introduction

Hybrid systems consist of both continuous and discrete components and, as such,

are capable of modeling a wide variety of physical systems, i.e., systems that evolve

with both continuous and discrete dynamics. Applications that exhibit hybrid dynamics

include embedded computer systems, in which digital circuits control continuous physical

processes, and multi-modal, multi-agent systems, such as vehicle and air transportation

systems [1, 2]. The hybrid systems framework also subsumes [3] models of systems with

discontinuous changes in state, for example those subject to complementarity conditions

[4] or modeled with differential inclusions [5].

Although hybrid systems model a wide variety of applications, we may not in general

assume that hybrid systems share the same fundamental properties as smooth dynamical

systems. Moreover, the interaction of the smooth and discrete components of a hybrid

system can result in solution behavior that is impossible for smooth dynamical systems

to exhibit. For example, the existence and uniqueness properties of solutions of hybrid

systems — called hybrid executions — are not the same as for smooth systems [6, 7];

therefore, one may not regard the stability of hybrid system equilibria in the same way as

the stability of smooth system equilibria [8]. An example of the fundamental difference

between the solutions of smooth and hybrid systems is Zeno behavior, where under cer-

tain conditions an execution of a hybrid system can take an infinite number of discrete

transitions in a finite amount of time [9].

Recent work has also shown that Poincaré maps for hybrid systems are fundamentally

different from Poincaré maps for smooth systems. Recall from the standard theory of

smooth dynamical systems that the linearization of the flow at a point in a closed and

periodic orbit will always have one eigenvalue equal to 1. This property has never been

observed for linearizations of the executions of hybrid systems; in [10] it was observed

that finite difference approximations of the linearization of the execution always have

one eigenvalue equal to 0, but the lack of agreement with the standard theory was

not explained. On the other hand in [11] and in [12, 13] the eigenvalue equal to 1 is

recovered through formulae that are not always well-defined for arbitrary hybrid systems.

Motivated by applications to bipedal robotics, the authors proved in [14] that these

discrepancies in the literature are in fact due to fundamental differences in the rank
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properties of Poincaré maps for smooth and for hybrid systems.

The first contribution of the present work is the extension of the results in [14] to

arbitrary, non-periodic hybrid executions. In particular, we show that the rank of an

execution will always fall between possibly distinct upper and lower bounds, and that

the upper bound is always less than the dimension of the space on which the execution

evolves. This result is in marked contrast with smooth dynamical systems, where the

rank of a solution is strictly equal to the dimension of the space. Our primary contri-

bution, however, is the derivation of conditions describing when an execution fails to

have maximal rank, that is, when it is rank deficient. The main result shows that rank

deficiency is caused by the alignment of the tangent space over the execution with the

nullspace of each reset map. Since the reset maps of a hybrid system describe the tran-

sitions between the discrete components, the main result reinforces the fact that hybrid

systems are fundamentally different objects from smooth systems.

The secondary contribution of this work emerges from application of the main result

to periodic solutions of hybrid systems. We show that when an execution is periodic

and rank deficient it may be possible for the system to be superstable. Recall that a

discrete dynamical system is said to be superstable when it is completely insensitive to

perturbations in initial conditions [15]. This occurs when the linearization of the discrete

dynamical system is equal to 0 at a superstable equilibrium point. By considering super-

stability from within the context of rank deficiency of executions, we obtain a condition

describing when a periodic hybrid execution is completely insensitive to perturbations in

its initial conditions.

The application of the results of this paper to periodic systems is motivated by exam-

ples from the area of bipedal robotics. Bipedal locomotion consists of a “swing” phase

followed by a discrete impact of the biped’s foot with the ground, so a biped robot is

naturally a hybrid system. A stable walking gait is therefore a stable periodic hybrid ex-

ecution. McGeer’s groundbreaking results [16] revealed that uncontrolled planar bipeds

walking down shallow slopes have stable, human-like walking gaits. The rich passive

dynamics of these walking gaits were thoroughly examined by Goswami et. al. [10]

and exploited with great success in the construction of a 3D passive biped that was

unfortunately not robust to perturbations in initial conditions [17].
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We foresee that the superstability conditions presented here could enable the design of

controllers that reduce our systems’ sensitivity to perturbations. In [18], finite-time con-

trollers and the properties of feedback-linearized systems are used to reduce the stability

analysis of a planar biped to an interval of the real line. We foresee that, in analogy to

this work, our rank deficiency conditions could be used to enable the design of (feedback-

linearizing) controllers that reduce the stability analysis of complex 3D bipedal systems

to lower-dimensional spaces by designing virtual constraints based upon these rank de-

ficiency conditions. That is, obtaining controllers that result in rank deficiency would

result in additional stability in the system, due to the connection between rank deficiency

and superstability. So, by exploiting the fundamental differences between dynamic and

hybrid systems, controllers could be designed that could increase the stability of systems

modeled as hybrid systems.

Finally, it is worth noting that, to the authors’ knowledge, there is no prior literature

that directly addresses the fundamental rank properties of hybrid executions, nor the

implications of rank deficiency to the periodic stability of hybrid systems.

We begin our analysis with a review of the standard theory of smooth dynamical

systems in Section 2. We show that the continuous-time flow of a smooth vector field

can be viewed as a discrete map [19, 20]. This standard theory applies directly to

the smooth components of a hybrid system, leading to straightforward techniques for

linearizing executions of hybrid systems, in Section 3. Using the linearization of a hybrid

system we determine the rank of arbitrary hybrid executions and derive necessary and

sufficient conditions for the rank of an execution to fall below its upper bound. These are

the rank deficiency conditions. In Section 4 we specialize the rank deficiency conditions to

periodic hybrid systems and their executions, called hybrid periodic orbits. A necessary

and sufficient condition for a hybrid periodic orbit to be superstable is illustrated on a 2-

domain hybrid system. The rank deficiency and superstability properties are illustrated

on two separate examples of a planar bipedal robot. In the first, we show that the

linearization of the hybrid periodic orbit of a 2-link planar compass biped accurately

detects the occurrence of a period-doubling bifurcation. In the second, we show that

although a planar kneed biped is capable of superstability, our particular limit cycle is

not even rank deficient.
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2. Smooth dynamical systems

In this section we review standard results [19] on the trajectories of smooth dynamical

systems that will be necessary to our analysis of hybrid systems in Section 3. In particular

we review how the flow, which depends continuously on time, can be viewed as a discrete

map. When the flow is a closed and periodic orbit this perspective results in the well-

known results on periodic stability of smooth dynamical systems [20]. As we will see in

the following section, these standard results apply to hybrid systems since a hybrid system

consists of collections of smooth and discrete components, and the smooth components

are the integral curves to smooth vector fields.

A smooth dynamical system is a tuple (M,f), where M is a smooth manifold with

tangent bundle TM and f : M → TM is a smooth vector field such that for the canonical

projection map π : TM → M , π ◦ f = Id, where Id is identity on M . We will assume

that M ⊂ Rn, in which case we can write the vector field in coordinates as ẋ = f(x)

with x ∈ M ⊂ Rn where necessarily ẋ ∈ TxM . A smooth function g : M → N between

manifolds induces a map between the tangent space Dg(x) : TxM → Tg(x)N ; this is just

the Jacobian or derivative.

2.1. Flows and variational equations

The unique solution to the differential equation ẋ = f(x) with initial condition x0 ∈

M is a trajectory c : I ⊂ [0,∞) → M such that c(t0) = x0 if I = [t0, t1], for some

t1 > t0. We refer to this curve as an integral curve or orbit of f(x). The flow of the

smooth vector field ẋ = f(x) is a smooth map φ : I × U → U ′ ⊂ M , where U is some

neighborhood of x0 = c(t0), satisfying the following properties for all r, s, t ∈ I,

c(t0) = φ0(c(t0))

c(t0 + t+ s) = φt+s(c(t0)) = φt ◦ φs(c(t0))

φ−r ◦ φr(x0) = x0 ⇒ φ−r = (φr)
−1

The flow, with t considered a parameter, is a diffeomorphism φt : U → U ′, for all t ∈ I.

The space derivative of φt(x0) is simply the partial derivative of the flow with respect

to its second argument,

Dxφt(x0) :=
∂φt(x0)

∂x0
.
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The space derivative is also the so-called fundamental matrix solution to the variational

equation [19, 21, 20]. The variational equation is the nonautonomous linear differential

equation

ż(t) = A(t) z(t) (1)

obtained by linearizing the vector field f along the flow with initial condition x0, where

A(t) := Df
(
φt(x0)

)
and z(t) := φ̇t(x0). Associated with this linear system is the funda-

mental matrix equation

Φ̇(t) = A(t) Φ(t), (2)

with solution Φ(t) = Dxφt(x0). As an integral curve, Φ(t) is nonsingular for all t and

has the property that

φ̇t(x0) = Φ(t)Φ−1(0) φ̇0(x0) = Φ(t) φ̇0(x0).

That is, with x1 = φt(x0),

φ̇t(x0) = Φ(t) φ̇0(x0),

f(x1) = Φ(t) f(x0). (3)

Note in particular that Φ(0) = Idn, the n× n identity matrix.

If an expression for the flow is known in closed form then Φ(t) can be obtained by

directly computing partial derivatives. Otherwise, the flow and its fundamental matrix

must be obtained by simultaneous numerical integration, as described in [21, 22]. As we

will see in the following Sections, accurate computation of the fundamental matrix is an

important issue, as it plays an important role in assessing periodic stability.

2.2. Flows to sections

In this Section we determine the properties of flows that reach, or intersect with, a

certain smooth hypersurface called a local section. Historically, analysis of flows to local

sections has been restricted to the special case of closed orbits [19, 20], which we review

in Section 2.4. However, as we will see in Section 3, since solutions of a hybrid system

consist entirely of flows that are permitted to evolve only until they reach a local section,

the properties of flows to sections are most pertinent to the analysis of hybrid systems.
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Definition 1. A local section of a vector field ẋ = f(x) on M is a smooth codimension-1

submanifold S of M that is also transverse to the flow.

S = {x ∈M | h(x) = 0 and Lfh(x) 6= 0},

where h : M → R is a C1 function and Lfh is the Lie derivative. More generally, any

submanifold N ⊂M is said to be transverse to the flow (or vector field f) if f(x) is not

in TxN .

It is possible to construct a local section through any point of the flow that is not an

equilibrium point [23].

Lemma 1 (Smale, 1963). Let f(x) be a vector field defined on a smooth manifold M . If

f(x) 6= 0 for some x ∈M then there exists a local section S through x.

The time it takes a flow to reach a local section is given by a well-defined map.

We reproduce the following Lemma from [19], the proof of which follows from direct

application of the implicit function theorem.

Lemma 2 (Hirsch & Smale, 1974). Let S be a local section, x0 ∈M and x1 = φt(x0) ∈ S.

There exists a unique, C1 function τ : U0 → [0,∞) called the time-to-impact map such

that for U0 a sufficiently small neighborhood of x0, φτ(x)(x) ∈ S for all x ∈ U0.

The Lemma allows us to view the flow to a section as a discrete map φτ : U0 → V

defined by φτ (x) := φτ(x)(x) for all x ∈ U0, where U0 is defined as above and V :=

φτ (U0) ∩ S is the image of φτ in S.

It is important to realize that the map φτ does not have the same properties as the

flow, φt. In particular, the map φτ depends implicitly on, and is an implicit function of,

the local section S, whereas φt does not depend implicitly or explicitly on S. In the next

subsection we review an important consequence of this fact: that φτ does not have the

same rank as the flow.

2.3. Rank of flows to sections

The flow φt : U → U ′, with t considered a fixed parameter, is a diffeomorphism, so its

total derivative, Dφt, will always have full rank. This is easily confirmed by computing

Dφt(x) = Dxφt(x) = Φ(t),
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which is nonsingular.

We likewise determine the rank of φτ : U0 → V ⊂ S by computing the rank of its

derivative, or linearization, at some point x0 ∈ U0:

Dφτ (x0) = Φ(τ(x0)) + φ̇τ (x0)Dτ(x0)

=

(
Idn−

f(x1)Dh(x1)

Lfh(x1)

)
Φ(τ(x0)), (4)

where x1 = φτ (x0) and Idn is the n × n identity matrix. The derivative of the time-to-

impact map was obtained from the proof of Lemma 2 in [19],

Dτ(x0) = −Dh(x1)Φ(τ(x0))

Lfh(x1)
, (5)

where h defines the section S, as in Definition 1. The following Theorem from [14] shows

that equation (4) has a nullspace and, as we will see, prevents the extension of theorems

on closed orbits to periodic executions of hybrid systems.

Theorem 3. Let S be a local section and x0 ∈ U0 with S and U0 as in Lemma 2. If

dim(M) = n then Dφτ (x0) has rank n − 1 if and only if x(t) = φt(x0) is not a closed

orbit. Moreover, the nullspace is

ns(Dφτ (x0)) = span{f(x0)}. (6)

In general, the flow to a section has rank equal to the dimension of the section and

so the total derivative of a non-closed flow to a section is a only diffeomorphism between

local sections. A proof of the following result is also in [14].

Corollary 4. Let x0 ∈ M with S0 a local section through x0, S a local section through

x1 = φt(x0) and U0 a neighborhood of x0 such that φτ (x) ∈ S for all x ∈ U0. Then for

V0 := U0∩S0 and V := φτ (U0)∩S, the restriction map φτ : V0 → V is a diffeomorphism.

Using the Lemmas and Theorems discussed thus far we may summarize the standard

properties of flows to sections as follows:

(S1) Lemma 1 implies that for a local section S of c(t0) there exists a sufficiently small

neighborhood U0 of c(t0) such that φτ (U0) ⊂ S.

(S2) From Theorem 3 and Corollary 4 we know there exists a local section S0 through

c(t0) such that for V0 := U0 ∩ S0 and V := φτ (U0) ∩ S, the restricted map φτ :

V0 → V is a diffeomorphism with rank n− 1.
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These properties are generically satisfied by flows to sections, and will be revisited when

we discuss hybrid systems in Section 3.

2.4. Closed orbits

It is well-known [19, 20] that the stability of a closed orbit is equivalent to the stability

of the Poincaré map associated with it. Let x∗ be the initial condition of the flow and

define a local section S through x∗. If the flow intercepts S at least once more then we

may define the first-return map φτ : U0 → S, such that x∗ = φτ (x∗), with U0 defined as

in Lemma 2. Using equation (3) it is easy to see, with x0 = x∗ = φτ (x∗) = x1, that

f(x∗) = Φ(τ(x∗)) f(x∗).

In other words, the space derivative of the closed orbit has an eigenvalue equal to 1 with

eigenvector f(x∗).

Since all points of V0 := U0 ∩ S also reach S, the Poincaré map of the closed orbit

is the restriction of the first-return map P = φτ |V0
: V0 → S. The Poincaré map is thus

a discrete dynamical system with fixed point x∗ = P (x∗). As the restriction map, the

Poincaré map necessarily has rank n−1 and, as a consequence, the stability of a Poincaré

map is determined by its n − 1 eigenvalues being within the unit circle. The following

result due to [20] relates the total and space derivatives of the periodic flow to the total

derivative of the Poincaré map.

Theorem 5 (Perko). The total derivative of the Poincaré map P = φτ |V0 : V0 → S at

x∗ depends only on the space derivative at x∗ = φτ (x∗). That is,

Dφτ (x∗) = Φ(τ(x∗)).

Since Φ(τ(x∗)) has an eigenvalue equal to 1 with eigenvector

f(x∗) = Φ(τ(x∗))f(x∗),

when coordinates on M are chosen so that f(x∗) = (0, . . . , 1)T then

Φ̃ = DP (x∗)

where Φ̃ is the first n− 1 rows and n− 1 columns of Φ(τ(x∗)) in the chosen coordinates.

Thus P (x∗) is exponentially stable if and only if the n − 1 eigenvalues of Φ̃ are within

the unit circle.
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Remark 1. Theorem 5 states that the total derivative of the flow at x∗ = φτ (x0) = x∗

has full rank n if and only if it is a closed orbit. However, Theorem 3 states that the

nullspace of the total derivative of the flow at x∗ = φτ (x0) is spanned by f(x0) if and

only if it is not closed, that is if x∗ 6= x0. To summarize, the main difference between a

closed and a non-closed orbit is that

Dφτ (x0) f(x0) =

f(x0), if x∗ = φτ (x0) = x0,

0, if x∗ = φτ (x0) 6= x0.

In the periodic case we have that f(x0) = f(x∗) is an eigenvector of the total derivative

of the flow to the section with eigenvalue equal to 1. In the non-closed case, instead of

being an eigenvector, f(x0) spans the total derivative’s nullspace.

As we will see in the following Section, solutions of a hybrid system consist, by

definition, of non-closed orbits. Thus, an important consequence of these properties is

that periodic solutions of hybrid systems cannot possibly have the eigenvalue properties

of a closed orbit. Any claims to the contrary would need to show that f(x0) is an

eigenvector of the linearization of an execution with eigenvalue equal to 1, but this is

definitively ruled out by the properties just mentioned. In fact, Theorem 3 leads directly

to the rank properties that we derive in the following Sections, cf. Lemma 7. See [14]

for more details on the fundamental differences between the periodic stability of smooth

and hybrid systems. Our study of the mechanisms causing rank deficiency in arbitrary

hybrid executions is motivated by these fundamental differences.

3. Hybrid dynamical systems

Our objective is to understand the rank properties of arbitrary hybrid executions in

order to enable the design of controllers that improve the stability properties of hybrid

systems. To this end, we use basic linear algebra to derive the conditions under which

rank deficiency occurs and then discuss how these conditions can be used in controller

design.

3.1. Hybrid systems and executions

We begin by revisiting the results of the previous section from the perspective of

hybrid systems and their executions.
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Definition 2. A hybrid system is a tuple

H = (Γ, D,G,R, F )

where

• Γ = (Q,E) is a graph such that Q = {q1, . . . , qk} is a set of k vertices and E =

{e1 = (q1, q2), e2 = (q2, q3), . . .} ⊂ Q × Q. With the set E we define maps sor :

E → Q which returns the source of an edge, the first element in the edge tuple,

and tar : E → Q, which returns the target of an edge or the second element in the

edge tuple.

• D = {Dq}q∈Q is a collection of smooth manifolds called domains, where Dq is

assumed to be an embedded submanifold of Rnq with dim(Dq) = nq ≥ 1.

• G = {Ge}e∈E is a collection of guards, where Ge is assumed to be an embedded

submanifold of Dsor(e).

• R = {Re} is a collection of reset maps which are smooth maps Re : Ge → Dtar(e).

• F = {fq}q∈Q is a collection of Lipschitz vector fields on Dq, such that ẋ = fq(x).

The continuous and discrete dynamics of a hybrid system are described using a notion

of solution called a hybrid execution. Where a smooth dynamical system is said to

generate solutions, a hybrid system is said to accept an execution; see [6] for more

background on solutions of hybrid systems.

Definition 3. A hybrid execution is a tuple

χ = (Λ, I, ρ, C)

where

• Λ = {0, 1, 2, 3, . . . } ⊆ N is a finite or infinite indexing set.

• I = {Ii}i∈Λ such that with |Λ| = N , Ii = [ti, ti+1] ⊂ R and ti ≤ ti+1 for 0 ≤

i < N − 1. If N is finite then IN−1 = [tN−1, tN ] or [tN−1, tN ) or [tN−1,∞), with

tN−1 ≤ tN .
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• ρ : Λ→ Q is a map such that eρ(i) := (ρ(i), ρ(i+ 1)) ∈ E.

• C = {ci}i∈Λ is a set of continuous trajectories where each ci is the integral curve

of the vector field fρ(i) on Dρ(i). Specifically, ci(t) = φ
ρ(i)
t−ti(ci(ti)), where φ

ρ(i)
t is

the flow associated with fρ(i).

We require the consistency conditions:

• For i < |Λ| and for all t ∈ Ii,

ci(t) ∈ Dρ(i) and ci(ti+1) ∈ Geρ(i) ,

ci(ti) = φi0(ci(ti)).

• For i < |Λ| − 1,

Reρ(i)(ci(ti+1)) = ci+1(ti+1).

3.1.1. Assumptions

We will only consider hybrid executions that are deterministic and non-blocking [6].

We further impose the following conditions on χ in order to ensure that the guards and

reset maps are sufficiently “well-behaved.” Let i < |Λ| − 1 and e = (ρ(i), ρ(i+ 1)).

(A1) The execution does not have any equilibria, i.e., fρ(i)(ci(t)) 6= 0, for all t ∈ Ii.

(A2) Re has constant rank re and Re(Ge) is a submanifold of Dtar(e).

(A3) Ge is a section, i.e., dim(Ge) = dim(Dsor(e)) − 1 and fsor(e)(x) 6∈ TxGe for all

x ∈ Ge. Furthermore, there exist subsets Si ⊂ Ge that are also local sections.

(A4) Re(Ge) is transverse to ftar(e) whenever dim(Dsor(e)) ≤ dim(Dtar(e)), that is, when

ftar(e)(y) 6∈ TyRe(Ge) for all y ∈ Re(Ge).

Remark 2. The final condition (A4) asserts that the target vector field is not tangent

to the image of the reset map whenever the reset maps to a larger-dimensional domain.

This is a reasonable assumption to make, since if dim(Dsor(e)) ≤ dim(Dtar(e)) then the

maximum dimension of the submersed submanifold Re(Ge) is

max(dim(Re(Ge))) = dim(Dsor(e))− 1 < dim(Dtar(e)),
12



implying that it is possible for Re(Ge) to be a codimension-m local section, where m =

dim(Dtar(e))− dim(Dsor(e)) + 1.

The converse is a much stronger assumption, so we do not make it; we do not assume

that Re(Ge) is a local section when dim(Dsor(e)) > dim(Dtar(e)) because it is possible

that if dim(Re(Ge)) = dim(Dtar(e)) then ftar(e)(y) ∈ TyRe(Ge) for all y ∈ Re(Ge).

As we will see, this transversality condition on Re(Ge) will allow us to tighten the

lower bound on the rank of our executions.

3.1.2. Properties

We may extend properties (S1-2) of flows to sections from Section 2 to every integral

curve ci ∈ C, i < |Λ|, satisfying (A1-4). These properties are generically satisfied by

any flow that reaches a guard, and will be necessary to our results on rank deficiency in

the following subsections.

(H1) Lemma 1 implies that for a local section Si ⊂ Ge of ci(ti+1) there exists a suffi-

ciently small neighborhood U i0 of ci(ti) such that φ
ρ(i)
τ (U i0) ⊂ Si.

(H2) From Theorem 3 and Corollary 4 we know there exists a local section Si0 through

ci(ti) such that for V i0 := U i0 ∩ Si0 and V i := φ
ρ(i)
τ (U i0) ∩ Si, the restricted map

φ
ρ(i)
τ : V i0 → V i is a diffeomorphism with rank equal to dim(Dρ(i))− 1.

Remark 3. It is easy to see that properties (S1-2) of flows to sections do indeed extend

naturally to the integral curves of a hybrid execution. Note that transverse coincidence of

an integral curve with a local section of a guard triggers a discrete transition to the next

or the same domain in the hybrid system graph. This means that the integral curves of

an execution are not permitted to evolve past local sections; they are implicit functions

of the local sections.

It is of course possible to conceive of examples of hybrid systems where the flow

reaches a guard but does not trigger a discrete transition. Such hybrid systems are

called trivial. The reset maps of a trivial hybrid system are necessarily equal to identity

and likewise the vector fields are all the same, fq = f for all q ∈ Q, so that the hybrid

execution χ can be written as the continuous flow of a single vector field. For such

systems, the integral curves are not implicit functions of the local sections and so the
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properties of flows to sections cannot be extended to them. Such systems should be

analyzed as smooth dynamical systems. We henceforth consider only non-trivial hybrid

systems.

3.1.3. Fundamental hybrid executions

The rank of a hybrid execution is determined by the rank of its linearization, or total

derivative, at every point. This motivates the following definition.

Definition 4. The fundamental hybrid execution associated with a given execution χ is

a tuple

Fχ = (Λ, I, ρ, C,W )

where Λ, I, ρ, and C are given in Definition 3 and W = {Φi}i∈Λ is a set of continuous

matrix-valued trajectories. Here each Φi is the integral curve of the vector field Φ̇i(t −

ti) = Dfρ(i)(ci(t)) Φi(t − ti). Specifically, Φi(t − ti) = Dxφ
ρ(i)
t−ti(ci(ti)); that is, each

Φi ∈ W is the fundamental matrix or space derivative of the flow evaluated along the

integral curve ci ∈ C. In addition, for i < |Λ| and for all t ∈ Ii, we require the consistency

condition:

φ̇it(ci(ti)) = Φi(t− ti) φ̇i0(ci(ti)).

As mentioned in Section 2, if numerical computation is necessary, the vector field

fρ(i) and fundamental matrix equation Φ̇i must be integrated simultaneously. In the

next subsection we show how to use Fχ to obtain the rank of χ, and thereafter it will be

assumed that Fχ is available whenever it is necessary to compute the total derivative of

the flow on a domain.

3.2. Rank of hybrid executions

Let H be a hybrid system and χ its hybrid execution with initial condition in the

guard, c0(t0) ∈ Geρ(0) . We are interested in finding a function relating the initial condition

to a point ci(ti+1) in the guard Geρ(i) , for some i < |Λ|. In fact this relation is given by

the partial function ψρ(i) : V 0 → V i defined by ci(ti+1) = ψρ(i)(c0(t0)), with

ψρ(i) = φρ(i)τ ◦Reρ(i−1)
◦ · · · ◦ φρ(1)

τ ◦Reρ(0) , (7)
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and the neighborhoods V 0 and V i of c0(t0) and ci(ti+1) defined as in (H2). We may

think of the partial function as describing the progress of the execution through the

hybrid system H.

Remark 4. This sequence of discrete maps ψρ(i) is a partial function since there is no

guarantee that all of the points in the image of each reset map reach the guard. More

precisely, we could call ψρ(i) a function if we could guarantee that Reρ(j)(φ
ρ(j)
τ (U j0 )) ⊂

U j+1
0 for every j ≤ i − 1 < |Λ|. This condition can be met if each neighborhood U j0 is

made sufficiently small.

Let Fχ be the fundamental execution associated with χ. The total derivative of (7)

is

Dψρ(i) = Dφρ(i)τ ◦DReρ(i−1)
◦ · · · ◦Dφρ(1)

τ ◦DReρ(0) , (8)

where for all j ≤ i, DReρ(j) is the Jacobian of Reρ(j) . We compute Dφ
ρ(j)
τ using (4) and

the matrices Φi ∈ W of the fundamental execution associated with χ, as follows. For

ease of notation let x0 = cj(tj), x1 = cj(tj+1) and hj : Dρ(j) → R define the local section

Sj ⊂ Geρ(j) as in Definition 1. Then,

Dφρ(j)τ (x0) = Φj(τ(x0)) + fρ(j)(x0)Dτ(x0)

=

(
Idnj −

fρ(j)(x1)Dhj(x1)

Dhj(x1) fρ(j)(x1)

)
Φj(τ(x0)), (9)

where τ(x0) = tj+1 − tj is the time it takes the flow to reach the guard and nj =

dim(Dρ(j)) is the dimension of the manifold. For the sake of convenience, in the following

discussion we will not explicitly use Fχ, and will merely assume that the fundamental

execution is available whenever it is necessary to compute Dφ
ρ(j)
τ .

Our analysis of the rank properties of χ is aided by identifying the terms in equation

(7) that can be associated with each edge in the graph Γ of H.

Definition 5. Let i < |Λ| − 1. For every edge e = (ρ(i), ρ(i + 1)) ∈ E, the edge map

ψe : V i → V i+1 takes the guard of one domain to the next and is defined by

ψe = φtar(e)
τ ◦Re.
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We use the edge map to rewrite equations (7) and (8) as

ψρ(i) = ψeρ(i−1)
◦ · · · ◦ ψeρ(0) , (10)

Dψρ(i) = Dψeρ(i−1)
◦ · · · ◦Dψeρ(0) . (11)

It is now necessary to recall some basic facts from linear algebra in order to prove

our rank deficiency conditions. First, we recall that the rank of the composition of linear

maps falls between possibly distinct upper and lower bounds. Let {Ai}ki=1 be a collection

of ni+1 × ni real-valued matrices. It can easily be shown using repeated application of

Sylvester’s inequality that the rank of their composition,
∏k
i=1Ai = A1 ◦A2 ◦ · · · ◦Ak, is

bounded above and below by

rank

(
k∏
i=1

Ai

)
≤ min
i∈{1,...,k}

{rank(Ai)}, (12)

rank

(
k∏
i=1

Ai

)
≥

k∑
i=1

rank(Ai)−
k−1∑
i=1

ni. (13)

We will also make use of the rank-nullity theorem [24] from linear algebra: for a linear

map A : Rn → Rm,

rank(A) + nty(A) = n,

where nty(A) is the dimension of the nullspace of A. Finally, we use rank-nullity and

[24] to prove the following basic Lemma on the nullity of the composition of linear maps.

Lemma 6. Let A and B be linear maps. Then

nty(B ◦A)− nty(A) = dim(ns(B) ∩ im(A)).

Proof. Let α = {a1, . . . , ar} be a basis for ns(A) and β = {b1, . . . , bq} a basis for ns(B)∩

im(A). By the rank-nullity theorem r + q ≤ n. Let {ar+1, . . . , ar+q} be the elements of

Rn that A maps to the basis β, such that bi = A(ar+i) for all i ∈ {1, . . . , q}. It suffices

to show that {a1, . . . , ar, ar+1, . . . , ar+q} is a basis for ns(B ◦A) ⊆ Rn.

Note that since {ar+i}qi=1 maps to a basis the set must be linearly independent. It

follows that since {ai}ri=1 is also a basis, {ai}r+qi=1 must be linearly independent. To see

this, realize that since {ai}ri=1 is also a basis, {ai}r+qi=1 is linearly dependent if and only if

r∑
i=1

xiai = −
q∑
j=1

yjar+j
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for arbitrary numbers x1, . . . , xr and y1, . . . , yq. But this would imply that the nullspace

of A is the linear combination of elements in the basis of the image of A, which is

impossible. Hence,

r + q = dim(ns(A)) + dim(ns(B) ∩ im(A))

= dim(ns(B ◦A)),

proving our claim.

The above Lemma and the rank-nullity theorem allow us to determine the rank of

the execution by first determining the rank of every edge map in ψρ(i).

Lemma 7. Let i < |Λ| − 1. For every edge e = (ρ(i), ρ(i+ 1)), the rank of the edge map

ψe : V i → V i+1 is bounded from below by

rank(ψe) ≥ rank(Re)− 1.

However, if Re(Ge) is transverse to ftar(e) then

rank(ψe) = rank(Re).

Proof. To see that rank(Re) is bounded from below, realize that Dφ
tar(e)
τ and DRe

can be expressed in coordinates as dim(Dtar(e)) − 1 × dim(Dtar(e)) and dim(Dtar(e)) ×

dim(Dsor(e))− 1 matrices. Moreover, since rank(φ
tar(e)
τ ) = dim(Dtar(e))− 1 by Theorem

3, it follows from (13) that

rank(ψe) ≥ rank(Re) + rank(φtar(e)
τ )− dim(Dtar(e))

≥ rank(Re)− 1

as desired.

To show that transversality of Re(Ge) always implies rank(Re) = rank(ψe) we apply

the rank-nullity theorem and Lemma 6 to Dψe, yielding

rank(Dψe) = rank(Dφtar(e)
τ ◦DRe)

= rank(DRe) + nty(DRe)− nty(Dφtar(e)
τ ◦DRe)

= rank(DRe)− dim(ns(Dφtar(e)
τ ) ∩ im(DRe)).
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Recall from Section 2, equation (6) of Theorem 3 that

ns(Dφtar(e)
τ ) = span{ftar(e)},

and that Re(Ge) transverse to ftar(e) by definition implies ftar(e)(y) 6∈ im(DRe) for all

y ∈ Re(Ge). Then

span{ftar(e)} ∩ im(DRe) = ∅

and so rank(Dψe) = rank(DRe). Noting that rank(Dψe) = rank(ψe) and rank(DRe) =

rank(Re) yields our desired result.

Remark 5. Lemma 7 implies that the rank of an edge map is only known exactly when the

transversality of Re(Ge) is guaranteed, regardless of whether dim(Dtar(e)) is greater than

or less than dim(Dsor(e)). Since we cannot determine the rank of all edge maps where

transversality is not guaranteed, we cannot determine the exact rank of the execution.

Thus, in order to obtain a tighter lower bound on the rank of the execution, we must

keep track of the number of edges where Re(Ge) may not be transverse to ftar(e). Because

we only assume that we have transversality (A4) when dim(Dsor(e)) ≤ dim(Dtar(e)), we

need only keep track of the number of domains that have source domains that are greater

in dimension than their target domains.

The following definitions allow us to track the progress of the execution through the

graph Γ of H.

Definition 6. Given i < |Λ| − 1, the set of traversed edges is

Ei = {eρ(0), . . . , eρ(i−1)},

and the set of visited vertices is the set of all source and target vertices of Ei,

Qi = sor(Ei) ∪ tar(Ei) = {ρ(0), . . . , ρ(i)}.

Definition 7. Let m be the number of non-transverse edges for which we do not assume

Re(Ge) is transverse to ftar(e). Then m is given by

m =
∣∣{e ∈ Ei : dim(Dsor(e)) > dim(Dtar(e))}

∣∣ .
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We now show that the rank of an execution falls between possibly distinct upper and

lower bounds. The following result is the extension of Theorem 4 in [14] to arbitrary,

non-periodic hybrid systems and executions.

Theorem 8. Let H be a hybrid system with execution χ satisfying assumptions (A1-4).

For any i < |Λ| − 1,

rank(ψρ(i)) ≤ min
e∈Ei
{rank(Re)} ≤ min

q∈Qi
{dim(Dq)− 1},

and

rank(ψρ(i)) ≥
∑
e∈Ei

rank(Re)−m−
∑

q∈sor(Ei)−{ρ(0)}
(dim(Dq)− 1)

where m, Ei and Qi are given in Definitions 6 and 7.

Proof. We show first that the rank of Dψρ(i) is bounded from above by the smallest-rank

reset map. Since, for any e ∈ E, the derivative of the edge map is Dψe = Dφ
tar(e)
τ ◦DRe,

and rank(Dφ
tar(e)
τ ) = dim(Dtar(e))− 1 by Theorem 3, equation (12) implies that

rank(Dψe) ≤ min{rank(DRe),dim(Dtar(e))− 1}.

Applying (12) again, to equation (11), yields

rank(Dψρ(i)) = rank(Dψeρ(i−1)
◦ · · · ◦Dψeρ(0))

≤ min
e∈Ei
{rank(Dψe)}.

It follows that

rank(Dψρ(i)) ≤ min
{

min
e∈Ei
{rank(Re)}, min

q∈Qi
{dim(Dq)− 1}

}
.

Finally, because rank(Re) ≤ dim(Dsor(e))− 1,

min
e∈Ei
{rank(Re)} ≤ min

q∈Qi
{dim(Dq)− 1},

which yields the upper bound on rank(Dψρ(i)) = rank(ψρ(i)).

We obtain the lower bound on Dψρ(i) by applying equation (13) and Lemma 7 to

(11). Note that, as stated in the proof of Lemma 7, the derivative Dψe of every edge
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map can be expressed in coordinates as a dim(Dtar(e)) − 1 × dim(Dsor(e)) − 1 matrix.

Applying equation (13), we obtain3

rank(Dψρ(i)) ≥
∑
e∈Ei

rank(Dψe)−
∑

q∈sor(Ei)−{ρ(0)}
(dim(Dq)− 1) .

Since — by assumption (A4) and Definition 7 — there are exactly m edges in Ei where

transversality in the target domain is not guaranteed, applying Lemma 7 to the above

inequality yields the desired lower bound on rank(Dψρ(i)) = rank(ψρ(i)).

Remark 6. Although the rank of each reset map and the dimension of every domain

is typically known a priori, if the bounds on rank(Dψρ(i)) are distinct then we cannot

know the exact rank of the execution without first simulating it. On the other hand,

if the upper and lower bounds on rank are equal then every execution accepted by H

necessarily has maximal rank at every point.

If the upper and lower bounds on rank in Theorem 8 are distinct then there must be

a mechanism that causes an execution to fail to have maximal rank. We determine this

mechanism in the next section.

3.3. Rank deficiency of hybrid executions

Our objective is to understand the causes of rank deficiency; this could, for example,

enable the design of controllers that improve the stability properties of hybrid systems. As

we will see, rank deficiency can result in superstable hybrid systems that are completely

insensitive to perturbations in initial conditions. We begin by formally defining the rank

deficiency of a hybrid execution.

Definition 8. Let H be a hybrid system with execution χ satisfying assumptions (A1-

4). We say the execution is rank deficient at a point ci(ti+1), i < |Λ|−1, if ψρ(i)(ci(ti+1))

does not have maximal rank, that is, if

rank
(
ψρ(i)(c0(t0))

)
< r,

where r is the upper bound on rank(ψρ(i)) from Theorem 8.

3Note that ni in equation (13) corresponds to the number of columns of Ai, implying ni =

dim(Dsor(e))− 1 for each e ∈ sor(Ei)− {ρ(i)}.
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The following Theorem is the main result of this paper. It identifies the intersection

of particular tangent spaces over the execution as the primary mechanism causing an

execution to fail to have maximal rank. We will address the significance of this result to

the potential design of stability-improving controllers both after its proof and throughout

the remainder of the paper.

Theorem 9. Let H be a hybrid system with execution χ satisfying (A1-4), initial con-

dition x0 = c0(t0) and i < |Λ| − 1. Then ψρ(i) is rank deficient if and only if∑
e∈Ei−{eρ(0)}

dim(ns(Dψe) ∩ im(Dψsor(e))) > rank(ψeρ(0))− r,

where r is the upper bound on ψρ(i) from Theorem 8.

Proof. The proof will follow from recursively applying the rank-nullity theorem and

Lemma 6 to the sequence of linear maps (11).

First, realize that any two linear maps defined on the same domain are related by the

rank-nullity theorem. In particular, it is an immediate consequence of rank-nullity that

for all j such that i ≥ j ≥ 2,

dim(Tc0(t0)V
0) = rank(Dψeρ(0)) + nty(Dψeρ(0))

= rank(Dψρ(j)) + nty(Dψρ(j)),

where the statement is obvious for j = 1 since ψρ(1) = φ
ρ(1)
τ ◦ Reρ(0) = ψeρ(0) . Thus, the

rank-nullity of ψρ(i) is certainly equal to the rank-nullity of ψρ(i−1):

rank(Dψρ(i)) + nty(Dψρ(i)) = rank(Dψρ(i−1)) + nty(Dψρ(i−1)).

Applying Lemma 6 to the above equation while noting that ψρ(i) = ψeρ(i−1)
◦ ψρ(i−1)

yields

rank(Dψρ(i)) = rank(Dψρ(i−1))− dim(ns(Dψeρ(i−1)
) ∩ im(Dψρ(i−1))).

If we continue in this vein by relating the rank-nullity of ψρ(j) with ψρ(j−1) for j =

i− 1, . . . , 2, we obtain

rank(Dψρ(i)) = rank(Dψeρ(0))−
∑

e∈Ei−{eρ(0)}
dim(ns(Dψe) ∩ im(Dψsor(e))). (14)
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The result follows by observing that rank(Dψρ(i)) = rank(ψρ(i)) for all i and that the

execution is rank deficient if and only if r− rank(ψρ(i)) > 0, where r is the upper bound

on rank from Theorem 8.

Remark 7. The left-hand side of the inequality in the statement of Theorem 9 shows that

rank deficiency is primarily affected by the intersection of the nullspace of every reset

map with the tangent space over the execution. To see this, realize that for any given

e ∈ E, the nullspace of the edge map ψe is the union of the tangent spaces

ns(Dψe) =
(

ns(Dφtar(e)
τ ) ∩ im(DRe)

)
∪ ns(DRe).

Therefore, because the nullspace of the flow to the guard on the target is small, i.e.,

nty(Dφtar(e)
τ ) = dim(span{ftar(e)}) = 1,

the nullspace of every edge map is primarily determined by ns(DRe). Seen another way,

a controller that maximizes the sum∑
e∈Ei−{eρ(0)}

dim(ns(DRe) ∩ im(Dψsor(e)))

for a given execution would be most effective at reducing the rank of that execution.

Remark 8. The right-hand side of Theorem 9 shows that the rank of the first edge

map in the execution significantly affects rank deficiency. Since the upper bound on the

rank of the execution is r = mine∈Ei{rank(Re)}, if the initial condition of the execution

lies in a domain where rank(ψeρ(0)) ≥ r, then the execution will not be rank deficient

unless enough intersections occur — or the intersections are large enough — so that the

inequality of Theorem 9 is satisfied. This can be understood as a consequence of the fact

that perturbations to initial conditions will propagate differently through the execution

depending on the domain in which it starts.

If the reset map is known exactly then it is easy to compute ns(DRe). However,

computing im(Dψsor(e)) is the same as computing a basis for the linearization of the exe-

cution. If an expression for the flow is known in closed form then computing im(Dψsor(e))

would be straightforward, because the fundamental matrix solution can be obtained by

directly taking partial derivatives of the expression for the flow. But this is not the
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case for most systems, and so in general the flow and its fundamental solution must be

obtained by simultaneous numerical integration; in most cases it is necessary to simulate

the hybrid system in order to check the condition of Theorem 9.

Thus Theorem 9 would make it possible to design controlled, rank deficient hybrid

systems through an iterative process involving simulation, confirmation of the conditions

of the Theorem, followed by re-design. This type of design flow might be well-suited for

use in a dynamic program [25], for example, where the objective of the program would

be to maximize the alignment of the tangent spaces over the execution.

In the next Section we discuss how to apply the above results to improve the stabil-

ity properties of periodic hybrid systems, through an artifact of rank deficiency called

superstability.

4. Application to Periodic Hybrid Systems

We are interested in applying the general results obtained thus far to periodic solutions

of hybrid systems. To this end, we restrict our attention to hybrid systems with cyclic

graphs and consider the rank properties of hybrid periodic orbits. We ultimately show

that the rank of a periodic orbit is intimately related to the stability of that orbit.

Definition 9. A hybrid system on a cycle is a hybrid system H = (Γ, D,G,R, F ) where

Γ = (Q,E) is a directed cycle such that Q = {q1, . . . , qk} is a set of k vertices and

E = {e1 = (q1, q2), e2 = (q2, q3), . . . , ek = (qk, q1)} ⊂ Q×Q.

Definition 10. A hybrid periodic orbit O = (Λ, I, ρ, C) with period T is an execution

of the hybrid system on a cycle H such that for all n ∈ Λ,

• ρ(n) = ρ(n+ k),

• In + T = In+k,

• cn(t) = cn+k(t+ T ).

Remark 9. Since O is periodic we may index the elements Sn0 , Sn, Un0 , V n0 and V n

defined in (H1-2) using the vertex set Q of the graph Γ of H rather than the indexing

set Λ (for example, one can take Sn = Sn+k).
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Remark 10. As in Remark 3, we do not consider trivial hybrid systems on a cycle, so

that O is never equivalent to the closed periodic orbit of a smooth dynamical system.

Thus, Theorem 5 does not apply (see the Remark immediately following the Theorem).

The interested reader may wish to consult the authors’ work in [14], where the contrast

between closed orbits and hybrid periodic orbits is addressed in more detail.

Definition 11. The fundamental hybrid periodic orbit associated with O is the funda-

mental execution FO = (Λ, I, ρ, C,W ), with the fundamental matrix solutions Φn ∈ W

subject to

Φn(t− tn) = Φn+k(t+ T − tn+k).

As previously mentioned, we will not explicitly use the fundamental orbit to state

our results on periodic stability.

Extending equations (7) and (10) to periodic orbits yields the following definition for

a Poincaré map of a hybrid system.

Definition 12. Let O be a given hybrid periodic orbit of H with initial condition x∗ =

c0(t0) ∈ Dρ(0), where ρ(0) = q = ρ(k) and so c0(t0) = φqτ (ck(tk)). The hybrid Poincaré

map Pq : V q → Sq is given by

Pq(x
∗) = φρ(k)

τ ◦Reρ(k−1)
◦ · · · ◦ φρ(1)

τ ◦Req (x0)

= ψeρ(k−1)
◦ · · · ◦ ψeq = ψρ(k). (15)

It is well-known that the stability of hybrid periodic orbits is related to the stability

of the hybrid Poincaré map. In particular, the following result is a corollary to Theorem

1 of [26] and the results of [14].

Corollary 10. Let H be a hybrid system with hybrid periodic orbit O satisfying (A1-

4). Then x∗ = Pq(x
∗) is an exponentially stable fixed point of the hybrid Poincaré map

Pq : V q → Sq if and only if O is exponentially stable.

As a discrete dynamical system, the stability of the Poincaré map is determined by

the eigenvalues of its derivative evaluated at a fixed point. The following is a corollary

to Theorem 8.
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Corollary 11. The hybrid Poincaré map Pq : V q → Sq is exponentially stable if and

only if all eigenvalues of DPq(x
∗) fall within the unit circle. In particular, Pq(x

∗) has

only rq = rank(DPq(x
∗)) many nontrivial eigenvalues, where

rq ≤ min
e∈E
{rank(Re)} ≤ min

q∈Q
{dim(Dq)− 1},

rq ≥
∑
e∈E

rank(Re)−m−
∑

q∈sor(E)−{q}
(dim(Dq)− 1) ,

m is the number of non-transverse edges in the cycle, and E and Q are the edge and

vertex sets of Γ.

It follows that the stability of a rank deficient Poincaré map is determined by fewer

eigenvalues than a Poincaré map with maximal rank. However, this does not imply, in

general, that rank deficient orbits are more stable than orbits with maximal rank. To

assert otherwise would be akin to claiming that lower-dimensional dynamical systems

are more stable than higher-dimensional dynamical systems, which is certainly not true

in general.

On the other hand, there is a specific case where rank deficiency improves the stability

properties of the Poincaré map. Recall that in the context of standard theory [15] a

superstable discrete dynamical system is characterized by the derivative of the system

equal to 0. When this occurs, the discrete dynamical system is said to be completely

insensitive to perturbations in initial conditions. We adapt this notion of superstability

to periodic hybrid systems as follows.

Definition 13. The hybrid periodic orbit O satisfying (A1-4) with initial condition x∗,

and its associated Poincaré map Pq are said to be superstable at x∗ if rank(DPq(x
∗)) = 0.

All eigenvalues of a superstable Poincaré map are equal to 0, implying that not only is

it exponentially stable, it is completely insensitive to perturbations in initial conditions.

We obtain the following Corollary to Theorem 9.

Corollary 12. The Poincaré map Pq is superstable if and only if the lower bound on

rank in Corollary 11 is not greater than 0 and∑
e∈E−{eq}

dim(ns(Dψe) ∩ im(Dψsor(e))) = rank(ψeq ).
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Proof. The result follows from equation (14) in the proof of Theorem 9. Noting that

q = ρ(0) and that Pq = ψρ(k) for a k-domain hybrid system on a cycle, equation (15), we

obtain from (14) that

rank(Pq) = rank(ψρ(k)) = rank(ψeq )−
∑

e∈E−{eq}
dim(ns(Dψe) ∩ im(Dψsor(e))).

Recall that Pq is superstable by definition if and only if rank(Pq) = 0. Observing that

this is possible if the lower bound on the rank of Pq is equal to 0 yields the desired

result.

Application of the above Corollary and Theorem 9 to single-domain hybrid systems

is instructive; we find that periodic single-domain systems are never rank deficient and

superstability is determined solely by the discrete transition.

Corollary 13. Let H be a single-domain hybrid system on a cycle, that is, let Q = {q}

and E = {e = (q, q)}. Then, Pq is never rank deficient and is superstable if and only if

rank(Re) = 0.

Proof. The Poincaré map of a single-domain system can be written

Pq = ψρ(1) = ψeρ(0) = φqτ ◦Re.

From Lemma 7 and assumption (A4) we know that rank(Pq) = rank(Re), which is

constant by (A2). Therefore, since Corollary 11 establishes that the upper bound r on

the rank of Pq is

r = min
e∈E
{rank(Re)} = rank(Re) = rank(Pq),

we see that the Poincaré map of a single-domain hybrid system is by definition never rank

deficient. Finally, note that rank(Pq) = rank(Re) = 0 if and only if it is superstable.

The planar compass biped, which we study in Section 4.2, is a periodic single-domain

hybrid system. We illustrate our results and the remarks following Theorem 9 on a simple

two-domain hybrid system before considering the compass biped.
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4.1. Superstability

The following application is a two-domain hybrid system on a cycleH = (Γ, D,G,R, F ),

with graph structure

Γ =
{
Q = {1, 2}, E = {e1 = (1, 2), e2 = (2, 1)}

}
,

and domains D = {D1, D2}. We will show that this system is insensitive to perturbations

to initial conditions in only one domain.

We define the first domain, D1, of this system to be the upper-right quadrant of R2.

The vector field on D1 is

f1(x, y) =
(
−y + x(1− x2 − y2), x+ y(1− x2 − y2)

)T
.

The flow in this domain is mapped to the next domain, D2, when it reaches the positive

y-axis, which is the guard on D1: Ge1 = {x = 0}. The reset map Re1 is defined by the

immersion of the xy-plane into R3, Re1(x, y) = (x, y, 0)T , which has rank 1 on Ge1 . As

an immersion, nty(DRe1) = 0.

The second domain is the subset of R3 defined by D2 = {x ≥ 0, y ≥ 0, z ≥ 0}, with

linear vector field

f2(x, y, z)T = (−x,−z, y)T ,

and guard Ge2 = {y = 0}. The flow of f2 is allowed to evolve in D2 until it reaches the

xz-plane, when it is mapped back to the positive x-axis in D1 by Re2(x, y, z) = (x+1, y)T ,

which has rank 1 and nullspace ns(DRe2) = span{(0, 0, 1)T }.

This system has a hybrid periodic orbit O with an initial condition c0(t0) = (1, 0)T

in D1. Define the Poincaré map for initial conditions on the x-axis of D1, P1 : V 1 → S1
0

by

P1 = Re2 ◦ φ2
τ ◦Re1 ◦ φ1

τ

and the Poincaré map for the second domain, P2 : V 2 → S2
0 by

P2 = Re1 ◦ φ1
τ ◦Re2 ◦ φ2

τ ,

where V 2 is the positive y axis of D2. It is easy to see that Re1 is transverse to f2 and

Re2 is transverse to f1; thus the image of both reset maps is transverse to the flow on
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Figure 1: Limit cycle of the superstable two-domain system. The stable cycle is shown in black. The

effect of perturbations in the xy-plane (grey) away from the superstable limit cycle (black) are completely

removed after one complete traversal of the cycle.

the target domain. With no non-transverse edges, Corollary 11 implies that

0 ≤ rank(P1) ≤ 1, and 0 ≤ rank(P2) ≤ 1.

Since the maximum rank of both maps is 1, in this case rank deficiency would also imply

superstability.

Applying Theorem 9 directly, we see that in order for P2 to be rank deficient the

following inequality must be true,

dim(ns(DRe1) ∩ im
(
Dφ1

τ ◦DRe2 ◦Dφ2
τ

)
) > rank(Re2 ◦ φ2

τ )− 1,

where the right-hand side evaluates to 0. However, as noted above, DRe1 is an immersion

and has no nullspace, so the left-hand side also evaluates to 0 and P2 cannot possibly be

rank deficient. Thus, the inequality is not satisfied because the tangent space over the

orbit never aligns with the nullspace of DRe1 .

In order for P1 to be rank deficient, the inequality

dim
(

ns(DRe2) ∩ im
(
Dφ2

τ ◦DRe1 ◦Dφ1
τ

) )
> 0

must be true. Since we can find exact expressions for the flows of both f1 and f2, we can

compute Dφ1
τ and Dφ2

τ directly by simply taking partial derivatives. We obtain

im(Dφ2
τ ◦DRe1 ◦Dφ1

τ ) = span{(0, 0, 1)T },
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Figure 2: Compass biped dimensions, point-mass locations and measuring conventions.

which, as noted above, is the nullspace of DRe2 . Thus, the nullspace of the reset map

aligns with the tangent space over the execution and P1 is rank deficient. Applying

Corollary 12, we confirm that the superstability condition is satisfied for P1:

dim(span{(0, 0, 1)T }) = 1 = rank(Re1 ◦ φ1
τ ).

This result is easily confirmed through simulation. All trajectories with initial conditions

on the x-axis converge to the limit cycle after one iteration of the cycle, as shown in Figure

1.

In this application, the simplicity of the vector fields in each domain allowed us to

easily analyze rank deficiency and superstability without numerical integration. Super-

stability of P1 was achieved by alignment of the reset map’s nullspace with the tangent

space over the execution. This could not be achieved for P2 because Re1 was an im-

mersion; thus, as noted in Remark 8, perturbations to initial conditions will propagate

differently through the execution depending on the domain from which they originate.

In the following applications it will be necessary to numerically integrate the funda-

mental matrix solutions on each domain in order to analyze rank deficiency.

4.2. Planar compass biped

In this section we consider the compass biped, a single-domain periodic hybrid system

that has been studied extensively in multiple contexts, with some recent work including

[18] and [27]. The objective of this application is to show that the total derivative of the

compass biped Poincaré map accurately predicts period-doubling bifurcations.
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Period-doubling bifurcations of hybrid systems have been studied extensively in the

literature. In [13, 11] the authors derive “jump conditions” and external formula that

determine the linearization of the system after a discontinuity. These formula, however,

do not apply to multi-domain hybrid systems with domains that are of different dimen-

sions, like the application in the following subsection. In [28] analysis of bifurcations of a

certain class of linear relay systems is aided by the fact that straightforward expressions

for their Poincaré maps can be found in closed form. The dynamics of bipedal systems,

however, are nonlinear and sufficiently complicated as to require numerical integration for

complete analysis of either their bifurcation or rank deficiency properties. The equations

and analysis described in previous Sections allow for this analysis.

The compass biped is a 2-link planar robotic mechanism capable of walking down

a shallow slope without control, see Figure 2. The links form the biped’s legs, with

the rotary joint connecting them forming its hip. The stance link is assumed fixed

to the slope and the nonstance link is free to swing above the slope. The hybrid

system model for this simple mechanism is H = (Γ, D,G,R, F ) with graph structure

Γ = {Q = {q}, E = {eq = (q, q)}}. As this is a 2-link mechanism, the dynamics evolve

on the tangent bundle to the configuration space Θ := T2. We give the dynamics on

Dq coordinates θ = (θs, θns, θ̇s, θ̇ns)
T , where the angles of the stance and nonstance legs

from the vertical are denoted θs and θns, respectively. We denote the vector field de-

scribing the biped dynamics as θ̇ = fq(θ; p), where p is the angle of the slope from the

horizontal4. The guard, Ge, is defined by the holonomic constraint function h : Dq → R

corresponding to the shallow slope,

Ge =
{
h(θ) = 0 = (sin(θs)− sin(θns)) tan(p) + (cos(θs)− cos(θns))

}
.

When the nonstance leg impacts the slope we model the jump in link velocities as an

instantaneous plastic impact using the reset map Re : Ge → Re(Ge). We refer the reader

interested in further modeling details to [29] and [10] for a comprehensive overview.

Let O be a hybrid periodic orbit for H with fixed point θ∗. It was first noted in [10]

that the compass biped has a period-doubling bifurcation when the angle of the slope is

increased to a certain angle. Denote the angle of the slope at the first period-doubling

4The notation fq(θ; p) indicates that θ is an argument of the function fq and p is a parameter.
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Figure 3: The 3 eigenvalues of DPq(θ∗) are plotted versus the angle of incline of the slope. Note that

all eigenvalues are within the unit circle except for one, which crosses −1 at p = 4.39◦.

bifurcation by p∗ and define the Poincaré map, Pq : V q → Sq, as in equation (15).

Because H has only one domain, and Re has full rank on the guard, applying Corollary

11 implies that

rank(Pq) = rank(Re) = 3.

We will confirm this by computing the total derivative of Pq,

DPq(θ
∗) = Dφqτ (Re(θ

∗)) DRe(θ
∗),

at the fixed point.

The derivative of the reset map is obtained by simply taking partial derivatives with

respect to θ. The total derivative of the flow, Dφqτ (Re(θ
∗)), is obtained using equa-

tion (9), where x1 = Pq(θ
∗), Dhj(x1) = Dh(Pq(θ

∗)) is the derivative of the holonomic

constraint function, and fρ(j)(x1) = fq(Pq(θ
∗); p∗). As noted previously, in order to

obtain Φj(τ(x∗)) = Φq(τ(θ∗)) it is necessary to integrate θ̇ = fq(θ; p) together with

Φ̇q = Dfq(θ(t); p) Φq(t) until the system reaches the guard5. Note that the derivative of

the vector field is taken with respect to θ, only.

We begin by studying how the eigenvalues of DPq change as the slope of the ground

is increased from p = 4.36◦ to p = 4.4◦. Evaluating the derivative of the Poincaré map

5The vector fields are simultaneously integrated from initial conditions Re(θ∗) and Id4.
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Figure 4: The time it takes the nonstance leg to reach Ge is shown versus p, the angle of incline of the

slope. After the slope increases beyond 4.39◦, two impacts with the ground are necessary for the biped

to complete a single hybrid periodic orbit; the biped “limps” down the slope.

at the fixed point associated with each parameter value yields the bifurcation diagram

shown in Figure 3. Note that all eigenvalues are within the unit circle except for one,

which crosses −1 at p = 4.39◦. It is well-known [15] that the linearization of a discrete

dynamical system has an eigenvalue equal to −1 at the period-doubling bifurcation [15].

We confirm that we do indeed have a period-doubling bifurcation from Figure 4, which

plots the time T it takes for the swing leg to impact the ground over several steps; it is

clear from the figure that the biped has stable, 2-periodic hybrid orbits for slopes greater

than 4.39◦. We have therefore confirmed that the eigenvalues of DPq(θ
∗) correctly reflect

that we have a bifurcation at φ∗ = 4.39◦. The fixed point corresponding to this parameter

value is

θ∗ = (0.385171,−0.231931, 1.729380, 2.183038)T ,

measured in radians and radians per second, and the eigenvalues of the Poincaré map

are

σ(DPq(θ
∗)) = (−0.999085, 0.105681, 1.384626E-15,−0.305354).

Note that one eigenvalue is nearly within machine precision of 0, so the rank of the

Poincaré map is equal to 3, as predicted by Corollary 11.

Figure 5 shows the phase portrait of the system for values of φ just before and just

after bifurcation. After passing the bifurcation point, the compass biped needs to take
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Figure 5: The phase portrait corresponding to two steps of the compass biped, for slope values just

before (p∗ = 4.385 shown in gray) and just after bifurcation (p∗ = 4.395 shown in black). The “limping”

behavior is apparent in the non-stance leg (shown solid) after passing the bifurcation point

two full steps in order to complete a cycle; the biped shows a slight “limping” behavior

after passing the period-doubling bifurcation. This behavior is evident in the phase

portrait, which shows two separate solid black lines corresponding to the movement of

the swing leg. One line indicates a faster leg swing and the other a slower swing, compared

to the swing leg movement just before bifurcation shown in solid gray.

In Corollary 13 we showed that periodic single-domain hybrid systems are never rank

deficient and are superstable if only if the reset map has constant rank equal to 0. The

following application extends the compass biped to a two-domain system that is possibly

rank deficient, and superstable in only one of its two domains.

4.3. Planar kneed biped

Our second application to periodic systems is a controlled planar biped with locking

knees walking on flat ground, as studied in [30]. It may be considered the augmentation

of the planar compass biped with an additional domain where the stance leg is locked

and the non-stance leg is unlocked at the knee. See Figure 6.

We model the planar kneed biped as a two-domain hybrid system on a cycle H =

(Γ, D,G,R, FG) with graph structure

Γ =
{
Q = {u, l}, E = {eu = (u, l), el = (l, u)}

}
.
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Figure 6: Diagram of a planar kneed biped. The annotations indicate dimensions, point-mass locations

and measuring conventions for stance, calf and thigh angles from the vertical.

In the unlocked domain Du, the non-stance calf rotates about the knee and we model

the biped as a 3-link planar mechanism. The dynamics evolve on the tangent bundle to

the configuration space Θu := T3, which we give coordinates θu = (θs, θns, θk)T with the

stance leg angle denoted by θs, non-stance thigh angle by θns, and non-stance calf angle

by θk. Each angle is measured from the vertical. Since the non-stance thigh and calf are

locked together in the locked domain Dl, the biped is modeled as a 2-link mechanism,

so the dynamics evolve on the tangent bundle to the configuration space Θl := T2 with

coordinates θl = (θs, θns)
T . We transition from Du to Dl when the knee locks, and from

Dl to Du when the foot strikes the ground.

The reset maps R = {Reu , Rel} model transitions between the locked and unlocked

domains. We make the standard assumption that all impacts are perfectly plastic; de-

tailed discussions of and formulas for the impact map may be found in [18, 31, 30] and

so will not be repeated here. However, it is worth noting that since dim(Du) = 4 and

dim(Dl) = 6, dim(ns(DRel)) = 2 since it maps to a lower-dimensional domain. On

the other hand, DReu does not have a nullspace, since it maps to a larger-dimensional

domain.

Finally, since we want the kneed biped to walk on flat ground, we use controlled

symmetries [32, 30] for our controlled vector fields FG = {fu, fl} on each domain.

Define the Poincaré map for initial conditions in the locked domain by

Pl = φlτ ◦Reu ◦ φuτ ◦Rel ,
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Figure 7: Planar kneed biped phase portrait. In Dl the non-stance calf angle θk (shown dashed) is equal

to the non-stance angle θns (dashed-dotted).

and in the unlocked domain by

Pu = φuτ ◦Rel ◦ φlτ ◦Reu .

Applying Corollary 11, we find that

2 ≤ rank(Pu) ≤ 3, and 0 ≤ rank(Pl) ≤ 3,

so that the stability of the planar kneed biped is determined by at most 3 eigenvalues;

this has been numerically confirmed in [14]. Since the lower bound on Pl is equal to 0,

it may be possible to use a combination of finite-time controllers on the dynamics in Dl

and Du to align the tangent space over the orbit with the 2-dimensional nullspace of

DRel , making the biped completely rank deficient, and thus insensitive to perturbations

in Dl. On the other hand, perturbations in Du cannot be completely canceled in Du,

since rank(Pu) ≥ 2.

It is impossible to confirm Corollary 12 without first simulating the system. We nu-

merically compute that DPu and DPl both have three stable eigenvalues [14]. Simulating

the system from the fixed point

c0(t0) = c0(t1) = (0.021462, −0.26990, −0.26990, 0.82882, −0.45645, −11.454)T

with slope p = π/60 (see Figure 7) allows us to verify thatO does not satisfy the condition

of Corollary 12, that is, ns(DRel) does not align with the tangent space over O. Thus,

this particular orbit of the planar kneed biped with controlled symmetries has maximal

rank.
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5. Conclusion

We have shown that the rank of a hybrid execution is always less than the dimension

of the space on which solutions evolve. The upper and lower bounds on the rank are

known a priori. The rank deficiency condition is determined by the alignment of the

nullspace of each reset map with the tangent space to the execution. We applied our

results to a periodic orbit and observed superstability, which is a desirable artifact of

rank deficiency, and noted that the eigenvalues of the linearization of the Poincaré map

correctly reflect the occurrence of period-doubling behavior in a compass biped.

The results presented in this paper emphasize fundamental differences between smooth

and hybrid systems, implying a depth to hybrid systems that is not yet fully understood.

We have shown that these differences result in behavior in hybrid systems that cannot be

obtained in smooth systems. In particular, as an application of the rank deficiency con-

ditions we derived, we considered the superstability of periodic orbits of hybrid systems,

a type of stability not found in continuous dynamical systems. A very interesting future

research direction is to create techniques that take advantage of existing geometric tools

— such as those used in [33] — that allow for the design of controllers that directly exploit

the rank properties of hybrid systems so as to achieve superstability. This will imbue

the resulting controlled hybrid system with an increased resistance to perturbations and

hence greater robustness.
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