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Abstract
This work presents Neural Gaits, a method for learning dynamic walking gaits through the enforce-
ment of set invariance that can be refined episodically using experimental data from the robot. We
frame walking as a set invariance problem enforceable via control barrier functions (CBFs) defined
on the reduced-order dynamics quantifying the underactuated component of the robot: the zero
dynamics. Our approach contains two learning modules: one for learning a policy that satisfies
the CBF condition, and another for learning a residual dynamics model to refine imperfections of
the nominal model. Importantly, learning only over the zero dynamics significantly reduces the
dimensionality of the learning problem while using CBFs allows us to still make guarantees for the
full-order system. The method is demonstrated experimentally on an underactuated bipedal robot,
where we are able to show agile and dynamic locomotion, even with partially unknown dynamics.
Keywords: bipedal locomotion, zero dynamics, safety, robotics

1. Introduction

Realizing bipedal locomotion on legged robots is difficult due to the compounded complexity of
nonlinear underactuated dynamics coupled with the hybrid nature of walking. Underactuation
makes the application of classic nonlinear control approaches challenging, necessitating the use
of offline optimization to generate periodic walking gaits. Due to the combinatorics of contact con-
ditions resulting from the hybrid dynamics, feasibility of this optimization problem requires either
fixing the contact times and positions (which can be vulnerable to perturbations) or expensive plan-
ning through the set of possible contact points. Pushing this offline optimization problem online
allows for reactive controllers but requires the use of reduced-order models that limit formal guar-
antees. Despite impressive examples of implementations that deal with bipedal walking in practice,
general bipedal locomotion with formal performance guarantees remains an open problem.

Prior Work in Control. In the control literature, bipedal locomotion follows two general
branches: walking with guarantees of stability and predictive control approaches. Walking with
guarantees usually relies on solving optimization programs offline to generate stable (periodic)
gaits (Hereid and Ames, 2017). Above all, this approach relies on constraining walking to be a
periodic orbit with assumed exponential stability on the underactuated coordinates of the robot.
This underlying assumption can be problematic in safety critical settings when the gait must satisfy
hard constraints such as staying on predetermined stepping stones (Csomay-Shanklin et al., 2021;
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NEURAL GAITS

Figure 1: A depiction of the Neural Gaits framework. Left: Designing barrier function candidates that we use to formally
describe walking. Middle: Training a policy capable of satisfying all the barrier condition in the zero dynamics state
space where the constraint is enforced. Right: Collecting hardware data to train a residual zero dynamics model. We
then refine the policy episodically using the augmented model.

Nguyen and Sreenath, 2015) and also precludes different walking modes such as period-two walk-
ing and, more generally, aperiodic locomotion (Xiong and Ames, 2019; Ames et al., 2017). This
is particularly important given that disturbance rejection can require aperiodic behaviors (Raibert
and Tello, 1986). Predictive control approaches on the other hand are able to avoid the aforemen-
tioned limitations by planning trajectories and/or policies online, and have shown great promise for
quadrupedal robots (Di Carlo et al., 2018; Grandia et al., 2019). Their application to bipedal robots
is comparatively sparse however, and has predominantly required static stability (Tedrake et al.,
2015; Scianca et al., 2020) or simplified models to mitigate the computational complexity (Kuin-
dersma et al., 2016; Apgar et al., 2018; Xiong and Ames, 2021). This leads to challenges when
seeking formal guarantees for dynamic bipedal locomotion in the presence of model mismatch be-
tween the planning and low-level control layers.

Prior Work in Learning. Prior work in machine learning has produced impressive results to-
wards realizing legged locomotion using reinforcement learning (Lee et al., 2020; Siekmann et al.,
2020; Castillo et al., 2021; Heess et al., 2017). These methods use relatively simple reward functions
along with sophisticated simulations to generate large amounts of data to train a policy capable of
traversing a variety of terrains. Still, these algorithms can be fragile when facing environments out-
side of the training dataset and are data inefficient due to not exploiting the full dynamics structure.
These challenges make it difficult to reliably apply these methods on complex hardware systems.
Other works have attempted to use reinforcement learning to train a parameterization of a Con-
trol Barrier Function (CBF) Control Lyapunov Function (CLF) Quadratic Program Controller (CBF
CLF QP) (Choi et al., 2020; Csomay-Shanklin et al., 2021). Differing from these works, this paper
does not learn a projection of the modeling error onto the CLF and CBF constraints; instead we
learn the projection of our modeling error on the zero dynamics. Furthermore, we do not specify a
desired trajectory but rather provide a set of barriers that imply walking as emergent behavior.

Our Contributions. In this work we are instead interested in automatically discovering good
walking policies by integrating learning with control-theoretic formulations of stable walking. Rather
than optimizing a simple reward/cost function, our policies learn to satisfy algebraic forward set in-
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variance conditions, certified by control barrier functions, that characterize good walking behavior
(as illustrated in the first block of Figure 1). This integrated approach offers three potential benefits.
First, we are able to certifiably handle impact uncertainty by training policies that satisfy conditions
for good impact behavior on a region surrounding the nominal impact guard. Second, our sampling-
based approach is focused on a lower-dimensional state space which can be more data efficient and,
under the assumption that walking is a form of set invariance, can produce policies with performance
certificates. The latter point contrasts with offline or predictive trajectory generation perspectives
where, even if you enforce control theoretic conditions over the predicted trajectory, you cannot cer-
tify performance over a set surrounding the trajectory, thereby breaking set invariance guarantees
even under small perturbations. Furthermore, leveraging zero dynamics significantly reduces the
dimensionality of the learning problem while remaining compatible with the use of control barrier
functions, thus enabling guarantees for the full-order system (see Section 3.3). Third, rather than
relying on the artificial constraint of periodic orbits, we are able to characterize walking solely as
set invariance while retaining stability guarantees. The combined benefit is a reliable and efficient
approach for designing gaits that can be deployed on hardware platforms.

Our proposed approach, called Neural Gaits, is composed of two learning modules. The first
module trains a policy (which generates walking gaits) to minimize the violations of forward set
invariance, implemented using control-theoretic barrier conditions as shown in the second block
of Figure 1. In doing so, we can guarantee forward set invariance, which implies (under suitable
assumptions) indefinite stable walking. The second module trains a residual dynamics model to
refine imperfections of the current dynamics model based on hardware experiments as represented
by the arrow between block three and two in Figure 1. Both modules are then iterated on episodically
with hardware experiments in the loop. We also build upon recent work in training ODE-based
systems (of which locomotive walking is an instance of), such as LyaNet (Rodriguez et al., 2022)
and Neural ODEs (Chen et al., 2018), in order to develop an effective training approach.

We empirically demonstrate our approach on the AMBER-3M hardware platform (Ambrose
et al., 2017) with partially unknown dynamics. We show that the resulting policy is capable of
making the robot walk under significant model mismatch and adapts to improve barrier satisfaction
across episodes. To the best of our knowledge, this is the first successful demonstration of integrated
learning and control for bipedal locomotion with stability guarantees.

2. Preliminaries

We provide a brief introduction of zero dynamics, hybrid dynamical systems, and control barrier
functions, which are necessary fundamentals to understand the proposed formulation in Section 3.

2.1. Output and Zero Dynamics

Consider the general nonlinear ordinary differential equation:

ẋ = f(x,u), x(0) = x0, (1)

with states x ∈ X ⊆ Rn, inputs u ∈ U ⊆ Rm, and dynamics f : X × U → Rn with f locally
Lipschitz in both arguments. For mechanical systems, we specialize to the control-affine case:

ẋ = f(x) + g(x)u, (2)
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Figure 2: a) The continuous and discrete phases of the robot, with actuated (η) and unactuated (z) coordinates depicted.
b) The diffeomorphism Φ, and the relationship between state space coordinates and output/zero dynamics coordinates.

where f : X → Rn and g : X → Rn×m are assumed to be locally Lipschitz. Denoting a parameter
in a parameter space θ ∈ Θ, we can define a collection of k outputs y : X×Θ→ Rk parameterized
by θ that we would like to converge to zero as:

y(x;θ) = ya(x)− yd(x;θ), (3)

where ya : X → Rk are the measured outputs, and yd : X ×Θ→ Rk are the desired outputs. For
locomotion, the outputs are typically taken either as joint angles (as done in this work), or as center
of mass and foot positions. For the policy yd learned in this work and shown in the center block of
Figure 1, θ corresponds to neural network parameters. Although all the concepts may be extended
to systems with valid decomposition into output and zero dynamics coordinates (which includes all
mechanical systems), for simplicity the remainder of the exposition will be restricted to the setting
used in this work, namely with k = 4 and ya taken to be the actuated joint angles of the robot. For
a complete description of output coordinates and zero dynamics, we refer to (Isidori, 1995).

Given these outputs y, we can separate the actuated and the unactuated coordinates for the robot,
which are shown in Figure 2a. As these outputs are vector relative degree 2, we can define error
coordinates ηi : X → Ni ⊆ R2 for i = 1, . . . 4 as ηi =

[
y>i , ẏ>i

]>, as well as the collection of

errors η =
[
η>1 , . . . , η>4

]>. Then, there exist 2 linearly independent functions zi : X → Zi ⊆
R for i = 1, 2 such that∇xzi(x)g(x) ≡ 0, and∇xzi(x) is linearly independent from∇xηi,j(x) for
i = 1, . . . , 4 and j = 1, 2. We can then construct a diffeomorphism1 Φ : X ×Θ→ N ×Z:[

η
z

]
=

[
Φη(x;θ)
Φz(x)

]
, Φ(x;θ), x = Φ−1

([
η
z

]
;θ

)
,

as shown in Figure 2b. Under this coordinate transformation, the system dynamics become:[
η̇
ż

]
=

[
f̂(η;θ) + ĝ(η;θ)u

ω(η, z;θ)

]
, (4)

where f̂ , ĝ and ω are the projection of the dynamics through the diffeomorphism Φ.
The zero dynamics manifold Z ⊂ X is thus the space where errors have been driven to zero:

Z = {x ∈ X : η(x) = 0},

1. This is differentiable in the first argument and differentiable almost everywhere in the second argument.
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Figure 3: a) The guard S, reset map ∆(S), and safe set CZ are visualized in the state space decomposed into output N
and zero dynamics Z coordinates. b) A safe set defined as regions of the state space (gray square) where h is positive
(blue region). Satisfying the CBF condition implies that the flows/discrete updates of the system will not leave the safe
set (although may approach the boundary). Violations imply a flow that could potentially leave the safe set.

as seen in Figure 2a. Observe that for z ∈ Z , we have that ż = ω(0, z;θ). The power of the
method of zero dynamics lies in that it allows for guarantees about the full nonlinear dynamics
by considering only a subspace of significantly smaller dimensionality (Isidori, 1995). Notice that
although the input does not appear in the zero dynamics ω in (4), the parameters of the policy θ do.
This realization motivates the use of the policy as a way to influence the zero dynamics and enforce
the desired barrier functions, as introduced below. Finally, in this work we will learn residual
dynamics ε(z) on the zero dynamics manifold for a corrected zero dynamics ż = ω(0, z) + ε(z)
that compensate for modeling error. This process is captured in the episodic iteration of Figure 1.

2.2. Hybrid Dynamics

Walking consists of continuous evolution with discrete impacts occurring as contact is made and
broken (e.g, the feet with the ground). This sequence of continuous and discrete dynamics is shown
in Figure 3a can be modeled in the language of hybrid systems as:

H C =

{
ẋ = f(x) + g(x)u x ∈ D\S
x+ = ∆(x−) x ∈ S ⊂ D,

where D ⊂ X is the domain where x(t) evolves. The guard, S ⊂ X , corresponds to the set of
states where the foot comes in contact with the floor. The reset map, ∆ : S → D models the instan-
taneous sign flip of velocities observed when two rigid bodies collide (the foot with the ground).
Furthermore, H C can be projected through the diffeomorphism Φ to exploit the decomposition
into output and zero dynamics. For more details, we refer to (Westervelt et al., 2018).

2.3. Control Barrier Function Certificates

Barrier function certificates allow us to make the notion of safety rigorous in the context of the
dynamical system in Equation (1). We begin by specifying a set that we wish to render safe:

C = {x ∈ X : h(x) ≥ 0} ⊂ X , (5)

where h : X → R is a continuously differentiable function. In the case of bipedal walking, safe sets
can describe conditions such as admissible torso angles and reasonable foot placement as shown in
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the first block of Figure 1. We assume that the compact set C is nonempty, has a non-empty interior,
and does not contain isolated fixed-points. We say that C is safe or forward invariant if x(t0) ∈ C
implies that x(t) ∈ C for all t ≥ t0. With this, we have the following condition for safety (see
(Ames et al., 2019) for a brief history of this approach):

Definition 1 (Control Barrier Function (CBF), (Ames et al., 2016)) Consider C as defined in Equa-
tion (5) where the continuously differentiable function h has nonvanishing gradients Dh(x) 6= 0
for all x in the boundary of C defined as ∂C = {x ∈ X : h(x) = 0}. The function h is a Control
Barrier Function (CBF) for Equation (1) on C if there exists α ∈ K∞,e such that for all x ∈ C:

ḣ(x) =
∂h

∂x
(x)f(x,u) ≥ −α(h(x)). (6)

A function α is in the family of class-K∞,e functions if for all a < b, α(a) < α(b), α(0) = 0,
lima→∞ α(a) = ∞ and lima→−∞ α(a) = −∞. In defining the CBF, we can parameterize the set
of all feedback controllers guaranteeing safety as:

Kcbf (x) =
{

u ∈ U : ḣ(x,u) ≥ −α(h(x))
}
. (7)

Similarly, this notion can be extended to discrete-time dynamical systems via:

∆h(xk,uk) , h(xk+1)− h(xk) ≥ −γh(xk), 0 < γ ≤ 1, (8)

as seen in Figure 3b. This leads to the following necessary and sufficient condition for safety:

Theorem 2 (Control Barrier Function Certificates, (Ames et al., 2016)) Given a feedback controller
u = k(x), the set C is safe if and only if u(x) ∈ Kcbf (x).

3. Neural Gaits: Locomotion as a Barrier Satisfiability Problem

We now present our Neural Gaits approach, as depicted in Figure 1. Instead of taking a controller-
design perspective, we will take one of reference trajectory design – specifically, we fix a controller
structure u(x;θ), which is parameterized by θ through the definition of y(x;θ). Our method relies
on the assumption that good walking can be characterized as a forward invariant set. Thus, the first
step of the method requires us to define a set of barrier functions that imply good walking. In the
following discussion, we will only consider barrier functions defined on the zero dynamics surface,
i.e. h : Z → R as defined when the error coordinates are zero (η = 0). Importantly, the guarantees
made on Z ⊂ X have relevance to the full state space, as is made precise in Section 3.4.

After constructing a collection of barrier functions, we train a policy yd that ensures the system
stays safe by minimizing the violation of the barrier function conditions (6) and (8) over regions of
the state space. The resulting policy renders the intersection of the safe set for all barriers forward
invariant. Finally, to mitigate model mismatch, we train a residual term ε(z) on the zero dynamics.
These corrected zero dynamics are then used to refine the existing policy episodically until the
desired walking performance is achieved.

3.1. Learning the Policy yd

Our learning approach builds upon and unifies two lines of work. The first studies how to charac-
terize good walking behavior as set invariance via a collection of barrier function candidates (Ames
et al., 2017). The second studies how to train neural ODEs to satisfy control-theoretic properties
such as Lyapunov stability (Rodriguez et al., 2022), which we extend to the barrier setting.
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Learning in the Zero Dynamics. Recall from Section 2.1 that the error and zero dynamics co-
ordinates are computed from the states using the diffeomorphism Φ, which only depends on the
policy through Φη. We thus parameterize the policy as a function of the projection of the state onto
the zero dynamics manifold and parameters θ, i.e. yd(x) = yd(Φz(x);θ). In other words, yd only
depends on the unactuated degrees of freedom of the system (e.g., the unactuated joint in Figure 2)
rather than the full state. Therefore, when there is no error (i.e. η = 0) we have that z ∈ Z with
dynamics ż = ω(0, z;θ). Note, importantly, that even when the error coordinates are zero, the
zero dynamics are still a function of yd and therefore θ. This implies that the zero dynamics are
influenced by the parameters of the policy even though the control inputs are not present in ω.

Learning to Satisfy Barrier Conditions. Taking inspiration from (Hsu et al., 2015) and (Ames
et al., 2017), we assume that walking can be characterized as set invariance via a collection of
barrier function candidates H = {hi}Ni=1 (see Table 1 discussed later in Section 3.2). To each hi,
we associate a region at risk Si ⊆ Z where the barrier function is enforced. We define a set of
neural network parameters that render the region at risk safe under the barrier definition:

Θi = {θ ∈ Θ : ∀z∈Si ḣi(z;θ) ≥ −α(hi(z;θ))}. (9)

In other words, each Θi corresponds to the set of policy parameters that render the set Si safe.
Thus, our learning problem is equivalent to finding a set of parameters θ ∈

⋂N
i=1 Θi that render

the system safe in all regions at risk. Similar to the Lyapunov Loss studied in (Rodriguez et al.,
2022), we introduce the concept of Barrier Loss as a learning signal for training:

Definition 3 (Barrier Loss) For a set of barrier function candidatesH = {hi}Ni=1 and correspond-
ing regions at risk Si ⊂ Z on the zero dynamics, a Barrier Loss, L : Θ→ R≥0, is defined as:

L(θ) =
N∑
i=1

∫
Si

max{0,−ḣi(z;θ)− α(hi(z;θ))}dz. (10)

When a choice of parameters θ achieves zero Barrier Loss, then the safety of the zero dynamics is
guaranteed by satisfying the forward invariance condition of the barrier functions:

Theorem 4 (Zero Barrier Loss Implies Safety of Zero Dynamics) The zero dynamics is guar-
anteed to be safe in all its regions at risk if and only if we find a θ∗ that attains L(θ∗) = 0.

Proof Notice that for all i ∈ {1 . . . N} both ḣi and α ◦ hi are continuous functions. This implies
that for all z ∈ Z and θ ∈ Θ, max{0,−ḣi(z;θ) − α(hi(z;θ))} is a continuous non-negative real
function. It is well known that a continuous non-negative real function will have zero integral if and
only if it is the zero function. We specialize this statement for the terms in our loss as follows:

∀z∈Si
max{0,−ḣi(z;θ)− α(hi(z;θ))} = 0⇔

∫
Si

max{0,−ḣi(z;θ)− α(hi(z;θ))}dz = 0 (11)

It is clear that the sum in L(θ) will be zero if an only if each integral term is zero since each integral
is a non-negative function. Thus we can conclude that L(θ∗) = 0 if and only if

∀i∈{1...N},z∈Si max{0,−ḣi(z;θ∗)− α(hi(z;θ∗))} = 0.

For any barrier hi and z ∈ Z you can see that max{0,−ḣi(z;θ∗)−α(hi(z;θ∗))} = 0 implies that:

−ḣi(z;θ∗)− α(hi(z;θ∗)) ≤ 0 =⇒ ḣi(z;θ∗) ≥ −α(hi(z;θ∗)),

i.e. the safety condition for the barrier is satisfied.
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3.2. Instantiation for Bipedal Walking

Table 1 describes the barrier functions used in our experiments, which take inspiration from (Ames
et al., 2017). We depict some of these conditions on the robot in Figure 4a. As all barrier func-
tions hi : X → R are enforced on the zero dynamics surface, we will write them implicitly as
hi ◦ Φ−1(0, · ;θ) : Z → R for i ∈ {1 . . . N} with N = 5 in this instantiation. In Table 1, tA
represents the torso angle, and px and pz represent the x and z position of the swing foot, respec-
tively. In addition to continuous time conditions, various conditions needed to be enforced on the
guard, namely enforcing the location of the guard, symmetry of the model before and after impact,
and a guard mapping condition. Interestingly, although these barriers would be relative degree two
on the full state dynamics, they are directly enforceable as relative degree one barriers on the zero
dynamics. This can be seen by treating yd as the input to the zero dynamics, and observing that the
zero dynamics themselves are functions of yd.

Note that these barrier functions h are defined over the space Z , as, given a policy yd( · ;θ) :
Z → R4, the mapping Φ−1 : N × Z → X is uniquely defined. We take inspiration from reduced
order models, and specifically the notion of orbital energy (Pratt and Drakunov, 2007) to define a
set ZO ⊂ Z with reasonably bounded orbital energies as our first region at risk. We also define the
set Sε ⊂ ZO which contains the part of the guard in ZO as well as a small region around it where
discrete-time guard conditions are enforced. We learn policies that satisfy the barrier conditions on
these regions of the zero dynamics by penalizing the violation of the constraints shown in Table 1.
Notice that penalizing guard constraints over a region results in policies that are robust to impact
modeling error since the policy must be prepared to change stance foot at any point in Sε rather than
just the guard S.

Learning Optimization Details. Evaluating the Barrier Loss in Equation (10) requires solving
an integral that is in general intractable. Instead, we use Monte Carlo sampling to approximate the
integral. Since our approach follows Algorithm 1 of (Rodriguez et al., 2022) we refer to it for more
details while noting that we optimize for the Barrier Loss rather than the Lyapunov Loss. A key
ingredient in the Monte Carlo sampling approach in (Rodriguez et al., 2022) is defining a compact
support set to sample from (i.e., where the barrier condition should be satisfied). In our work this
compact support set directly corresponds to the region at risk for each barrier condition.

3.3. Learning the Residual Zero Dynamics ε(z)

As outlined in Figure 1, we can improve upon the nominal zero dynamics model by collecting tra-
jectories of the robot executing the resulting policy in hardware. We can then use those trajectories
to learn a residual error term on the zero dynamics ˆ̇z = ω(0, z;θ) + ε(z) where ε is the learned

Torso Angle {z ∈ ZO} − π
10 ≤ θt(z) ≤ 0.05

Swing Foot Clearance {z ∈ ZO} 0 ≤ (px(z)− cx)2 + (pz(z)− cz)2 − r2 ≤ 0.3
Impact Mapping {z ∈ Sε} −0.15 ≤ ∆(z) + z ≤ 0.15

Symmetry {z ∈ Sε} y(z) = y(∆(z))
Foot on Guard {z ∈ Sε} pz(z) = 0

Table 1: Barrier functions used to characterize bipedal walking, and the associated regions at risk in which they are
enforced. The first two are enforced over the continuous dynamics, and the bottom three in a buffered region of the guard.
The strict equality on symmetry and the foot on guard conditions were also enforced as a training loss.
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Figure 4: a) A depiction of the barrier functions used to enforce walking as set invariance. On the left are the two
continuous time barrier conditions, and on the right the three barrier conditions enforced at the guard. The red dot on the
foot indicates the stance foot, and b) The safe set on the zero dynamics CZ , as certified by the proposed learning method,
and the combined safe set Cσ , and described in Theorem 5.

residual term. We model this residual term using Neural ODEs (Chen et al., 2018), which are nat-
urally compatible with our policy learning approach. We can iterate this process multiple times,
alternating between learning θ and ε until the resulting policy achieves the desired behavior.

3.4. Providing Guarantees in the Full State Space

Assuming a controller which exponentially converges the outputs y(x), for example a feedback
linearizing or control Lyapunov function based controller, the converse Lyapunov theorem allows
us to construct a Lyapunov function Vη : N → R verifying the exponential convergence of the
outputs. Along with a certificate of safety hZ : Z → R on the zero dynamics space, we can
construct a set in the combined space N × Z which is safe, and has a barrier function certificate.
This is described in the following theorem.

Theorem 5 Let Vη = η>Pη : N → R be an exponential control Lyapunov function for the output
dynamics with V̇η ≤ −γVη and hZ : Z → R be a barrier function on the zero dynamics with safe
set CZ . Then, there exists a constant σ ≥ 0 and c ≥ 0 such that if ḣZ(z) ≥ −αhZ(z) + c with
α ≤ γ

2 , the barrier function h(η, z) = hZ(z)− σVη(η) is safe with set Cσ.

Proof First note that the derivative of the function is given by:

ḣ =
∂hZ
∂z

(z)w(η, z)− σV̇η(η)

≥ −αhZ(z) + c−
∣∣∣∣∂hZ∂z

(z) (w(η, z)−w(0, z))

∣∣∣∣+ σγVη(η)

≥ −αh(η, z) + c− LhZLωη‖η‖2 +
σγ

2
λmin(P)‖η‖22, (12)

where the third line follows from Cauchy Schwartz, the fact that hZ and ω(η, z) are locally Lips-
chitz with Lipschitz constants LhZ and Lωη , respectively, converse Lyapunov, and the assumption
that α ≤ γ

2 . Taking β1 = LhZLωη , and β2 = γ
2λmin(P), we observe that −β1‖η‖2 + σβ2‖η‖22 ≥

− β2
2

4σβ3
, c. By taking c defined as such, we achieve the desired result.

The above theorem motivates the perspective of this work: satisfying barrier function certificates
in the zero dynamics enables reasoning about safe sets in the complete state space. Note that the
hybrid case is not addressed here, and is an interesting direction for future theoretical work.
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Figure 5: Gait tiles of the neural network encoding the final trained policy running in real time on the AMBER-3M robot.
For a video discussing the methodology and summarizing the hardware results, please refer to (vid).

4. Simulation and Experimental Results

The hardware platform used in this work was the planar underactuated biped AMBER-3M (Am-
brose et al., 2017), which has actuators on the hips and knees, and point contact feet. Both in
simulation, where the RaiSim (Hwangbo et al., 2018) environment was used, and on hardware, the
pipeline went as follows: the zero dynamics coordinate z was estimated, the Neural Network policy
yd(z;θ) was evaluated, and the desired output values were passed to a PD controller running at
1kHz. The policy yd(z;θ) was randomly initialized and was trained for 1000 epochs. The AdamW
optimizer was used in PyTorch (Paszke et al., 2019) with an initial learning rate of 10−2, weight
decay of 10−4, with a learning rate decay schedule at epochs 100, 400, and 800. Initially, the ”gait”
had the robots leg flailing randomly in the air, and when integrated resulted in the robot falling over.
Once the loss converged, the policy had a loss in the order of 5× 10−3, and was able to walk stably
in the simulation. The neural network ran in closed loop on the hardware platform and was called
at approximately 500 Hz to produce desired outputs for the system to track. Unlike simulation,
once tested on hardware, the policy resulted in the robot stumbling forward, unable to walk without
falling. Data was collected over various trials, after which the methodology proposed in Section 3.3
was used to learn the residual of the model uncertainty, as projected to the zero dynamics space.
During this process, Adam and other SGD methods were numerically unstable even with gradient
clipping, so Nero (Liu et al., 2021) was used instead.

Once a residual term was learned, a new policy yd(z,θ) was trained with the updated dynamics
(warm started with the policy from the previous iteration). After convergence, the gait was again
tried on hardware. The gait was significantly more stable, and able to walk without assistance;
however, the gait was not robust to walking speeds. Therefore, the process was repeated, and again
a new policy was learned. When testing that policy, the robot was able to walk on its own, and was
robust to different walking speeds. A sample gait is shown on Figure 5. The complete code can be
found here (git).

5. Conclusion

In this work, barrier functions, machine learning, and dimension reduction via zero dynamics were
combined to provide a novel way of generating walking behaviors for a bipedal robot. Our approach
used learning in two places: policy design and residual dynamics modeling via data collection on
hardware. The proposed method culminated in a demonstration of agile and robust locomotion on
hardware. Future work includes studying more complex robots, online learning, as well as policy
learning for new behaviors (e.g., walking up stairs).
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