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Aaron D. Ames

Abstract This paper presents the first steps toward automatically generating robotic
walking from human walking data through the use of human-inspired control. By
considering experimental human walking data, we discover that certain outputs of
the human, computed from the kinematics, display the same “universal” behavior;
moreover, these outputs can be described by a remarkably simple class of func-
tions, termed canonical human walking functions, with a high degree of accuracy.
Utilizing these functions, we consider a 2D bipedal robot with knees, and we con-
struct a control law that drives the outputs of the robot to the outputs of the human.
Explicit conditions are derived on the parameters of the canonical human walk-
ing functions that guarantee that the zero dynamics surface is partially invariant
through impact, i.e., conditions that guarantee partial hybrid zero dynamics. These
conditions therefore can be used as constraints in an optimization problem that min-
imizes the distance between the human data and the output of the robot. In addition,
we demonstrate through simulation that these conditions automatically generate a
stable periodic orbit for which the fixed point can be explicitly computed. There-
fore, using only human data, we are able to automatically generate a stable walking
gait for a bipedal robot which is as “human-like” as possible.

1 Introduction

Obtaining human-like robotic walking has been a long standing, if not always ex-
plicitly stated, goal of robotic locomotion. Achieving this goal promises to result in
robots able to navigate the myriad of terrains that humans can handle with ease; this
would have, for example, important applications to space exploration [4]. Moreover,
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going beyond purely robotic systems, if one can understand how to make robots
walk like humans, this understanding can be used to build robotic assistive and
prosthetic devices to aid people with walking impairments and lower extremity am-
putations walk more efficiently and naturally [29, 8, 22]. Thus, the ability to obtain
human-like robotic walking has important and far-reaching ramifications.

The main idea behind this work is that regardless of the complexity present in
human walking—hundreds of degrees of freedom coupled with highly nonlinear
dynamics and forcing—the essential information needed to understand walking is
encoded in simple output functions. That is, we can view the human locomotive sys-
tem as a “black box” and seek outputs of that system that characterize its behavior
in a universally simple fashion or, in other words, attempt to find a low dimensional
representation of human walking encoded through outputs described by canonical
functions. The goals of this paper are, therefore, two-fold:

1. Determine output functions from human walking data that are accurately de-
scribed by functions that are canonical, i.e., universal functions of the simplest
and most significant form possible.

2. Use these functions to design controllers for a bipedal robot that result in stable
walking which is as “close” as possible to human walking.

With the first goal in mind, human data is considered from an experiment where
9 subjects performed straight-line flat-ground walking recorded using motion cap-
ture. From the kinematic data associated with this human walking, specific outputs
are computed and it is shown that they are accurately described by a very simple
class of functions: either a linear function of time, or the time solution to a linear
mass-spring-damper system, i.e., a second order linear system response. We there-
fore achieve the first goal: humans appear to display universally simple behavior
when walking, which can be encoded by canonical human walking functions. This
result provides insight into the basic mechanisms underlying human walking since
we conclude that, at the most basic level, the primary outputs associated with loco-
motion are characterized by a system of linear springs and dampers parameterized
in time by the forward walking velocity.

To address the second goal, we consider what we believe to be the simplest
bipedal robot that can display “human-like” walking—a 2D robot with knees, mod-
eled as a hybrid system—and we define human-inspired outputs: the difference be-
tween the outputs of the robot (computed via kinematics) and the human (encoded
through canonical walking functions), along with a state-based parameterization of
time (achieved through a linear human walking function). Input/output linearization
is used to construct an autonomous control law that drives the human-inspired out-
puts to zero exponentially fast; thus, on the corresponding zero dynamics surface,
the outputs of the robot and human are in agreement. We are able to show that,
using the human-inspired outputs, we are able to obtain bipedal robotic walking
using essentially the same parameters for the human walking functions that were
obtained by fitting the data. Yet, due to impacts in the system—which perturb the
robot outputs away from the human outputs at foot strike—the resulting walking is
reasonably human-like but the velocities are excessively high.
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To address the issue of perturbations away from the human outputs at foot strike,
we consider the partial zero dynamics surface consisting of all of the “relevant” out-
puts that must be kept invariant through impact, i.e., the relative degree 2 outputs.
Conditions are derived—stated only in terms of the parameters of the canonical
human walking functions—so that this surface is invariant through impact, i.e., con-
ditions that assure partial hybrid zero dynamics. This result is framed as constraints
on an optimization problem where the cost function is the sum of residuals squared,
resulting in a least squares fit that is as “close” as possible to the human outputs
and that ensures invariance of the partial hybrid zero dynamics surface through im-
pact. Even with these constraints, the data for the human outputs is described in a
remarkably accurate way by the canonical human walking functions. Moreover, the
constraints are constructed in such a way that they automatically produce an initial
condition to a stable walking gait for the bipedal robot. We demonstrate this through
simulation by obtaining walking for bipedal robots with the mass and length param-
eters of multiple human subjects. Using only the human walking data, we auto-
matically produce parameters for the human-inspired controller along with a stable
walking gait that is as “human-like” as possible.

It is important to note that this is not the first paper that attempts to bridge the gap
between human and robotic walking [17, 23, 28, 29], although there have been rel-
atively few studies in this direction when compared to the vast literature on robotic
walking and biomechanics (see [9, 10, 11, 33] and[15, 31, 35, 36], to only name a
few). Of particular note is [28], which is very much in the same spirit as this pa-
per. In particular, like this paper, that work uses only human parameters and human
data to generate human walking, where the least squares fit is used to determine
parameters that ensure hybrid zero dynamics. The main difference lies in the output
functions and parameterization of time considered. In particular, this paper utilizes
canonical human walking functions describing outputs of the human, while [28]
considers high degree (9™ order) polynomials which are fit directly to the angles of
the human over time. This difference is, in the end, a fundamental point of depar-
ture. More generally speaking, by looking at outputs of the human that are described
by canonical functions intrinsic to walking, the hope is that the fundamental mech-
anisms underlying human walking can be discovered and exploited to achieve truly
human-like bipedal robotic walking.

The structure of this paper is as follows. In Sect. 2 we formally introduce hybrid
systems with a view toward modeling bipedal robots. The specific robotic model
that will be considered throughout this paper is introduced at the end of the section,
where the parameters of the robot are obtained from the humans that performed the
walking experiment. This experiment is discussed in Sect. 3, where the canonical
human walking functions are introduced, and it is demonstrated that these functions
can accurately fit the human output data. Sect. 4 constructs a control law for the
bipedal robot based upon the human output functions, and it is shown that this con-
trol law can be used to obtain robotic walking—yet the outputs of the robotic walk-
ing fail to agree with the human outputs due to the lack of hybrid zero dynamics.
In Sect. 5 we remedy this problem through the the formulation of an optimization
problem that produces the closest fit of the human walking functions to the human
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outputs which guarantee partial hybrid zero dynamics. In Sect. 6, we show through
simulation that the parameters solving the optimization problem automatically pro-
duce the initial condition to a stable robotic walking gait. This will be demonstrated
on robots with parameters from multiple subjects, in addition to an underactuated
robot (with no actuation at the ankle) to demonstrate the extensibility of this ap-
proach. Finally, conclusions and future directions are discussed in Sect. 7.

2 Lagrangian Hybrid Systems and Robotic Model

Hybrid systems are systems that display both continuous and discrete behavior and
so bipedal walkers are naturally modeled by systems of this form, with continu-
ous dynamics when the leg is swinging forward and discrete dynamics when the
foot strikes the ground resulting in an instantaneous change in velocity. This sec-
tion, therefore, introduces the basic terminology of hybrid systems, discusses how
to build hybrid models of bipedal robots through hybrid Lagrangians, and applies
these constructions to the bipedal robot considered in this paper.

Hybrid Systems. We begin by introducing hybrid (control) systems (also referred
to as systems with impulsive effects (or systems with impulse effects [13, 14]); for
definitions of hybrid systems that consist of more than one domain, we refer the
interested reader to [14, 26]. Note that we can consider hybrid systems with one
domain because the biped considered will not have feet; if feet are added to the
robot, more complex hybrid systems must be considered. For example, all humans
appear to display the same universal discrete structure when walking consisting of
four discrete domains [7, 30].

Definition 1. A hybrid control system is a tuple,

HE = (X,U,S,A,f,g),

where

e X is the domain with X C R" a smooth submanifold of the state space R”,
e U C R™ is the set of admissible controls,

e S C X is a proper subset of X called the guard or switching surface,

e A:S— X is asmooth map called the reset map,

e (f,g) is a control system on X, i.e., in coordinates: x = f(x) + g(x)u.

A hybrid system is a hybrid control system with U = 0, e.g., any applicable feedback
controllers have been applied, making the system closed-loop. In this case,

% = (X7S7A7f)?

where f is a dynamical system on X CR", i.e., x = f(x).
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Periodic Orbits. Due to the discrete behavior present in hybrid systems, solutions
to these systems (termed executions) are fundamentally different than solutions to
dynamical systems. We will forgo the complexity of introducing executions since in
the case of bipedal walking we are only interested in periodic solutions. In particular,
in the context of bipedal robots, stable walking gaits correspond to stable periodic
orbits. With a view towards periodic orbits in the context of bipedal walking, we
will introduce periodic orbits of hybrid systems with fixed points on the guard (for
more general definitions, see [14, 32]). Let ¢(,x0) be the solution to x = f(x) with
initial condition xy € X. For xx € S, we say that ¢ is periodic with period T > 0 if
O(T,A(xx)) = xx. A set 0 is a periodic orbit with fixed point x* if 0 = {@(t,x*):
0 <t < T} for a periodic solution @. Associated with a periodic orbit is a Poincaré
map [32]. In particular, taking S to be the Poincaré section, one obtains the Poincaré
map P : S — S which is a partial function:

P(x) = ¢(Ti(x),A(x)),

where 7; is the time-to-impact function [33]. As with smooth dynamical systems,
the stability of the Poincaré map determines the stability of the periodic orbit &. In
particular, the Poincaré map is (locally) exponentially stable (as a discrete time sys-
tem x;1 = P(x;)) at the fixed point x* if and only if the periodic orbit & is (locally)
exponentially stable [19]. Although it is not possible to analytically compute the
Poincaré map, it is possible to numerically compute its Jacobian. Thus, if the eigen-
values of the Jacobian have magnitude less than one, the stability of the periodic
orbit & has been numerically verified.

Lagrangian Hybrid Systems. Given a bipedal robot, one naturally has a configu-
ration space, a Lagrangian, and a set of admissible constraints (the swing foot must
remain above the ground). This information, inherent to a specific robot, can be
encoded formally as a hybrid Lagrangian [5]:

Definition 2. A hybrid Lagrangian is a tuple:
g = (Q?Lvh)v

where

e () is the configuration space,

e L:TQ — Risahyperregular Lagrangian,

e h:(Q — R provides unilateral constraints on the configuration space; it is assumed
that 2~ (0) is a manifold.

Using a hybrid Lagrangian, we can explicitly construct a hybrid system.

Continuous Dynamics: The Lagrangian of a bipedal robot, L : TQ — R, can be
stated in the form of the kinetic minus potential energy as:

L(g.4) = 54" Dla)d ~V q).
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The Euler-Lagrange equations yield the equations of motion; for robotic systems
(see [20]), these are of the form:

D(q)i+H(q,9) = B(q)u.

Converting the equations of motion to a first order ODE yields the affine control
system (f’g):

a0 ~Lpgugal g O

Domain and Guard: The domain specifies the allowable configuration of the system
as specified by the unilateral constraint function #; for the biped considered in this
paper, this function specifies that the non-stance foot must be above the ground. In
particular, the domain X is given by:

X ={(q,9) €TQ: h(q) > 0}. 2)

The guard is just the boundary of the domain with the additional assumption that
the unilateral constraint is decreasing:

§={(¢.4) € TQ: h(q) =0 and dh(q) < 0}, 3)

where dh(q) is the Jacobian of & at g.

Discrete Dynamics: In order to define the reset map, it is necessary to first augment
the configuration space Q. Let p represent the Cartesian position of the stance foot
in the x,z plane. The generalized coordinates are then written as g, = (py, pz,q) €
Q. = R? x Q. Without loss of generality, assume that the values of the extended co-
ordinates are zero throughout the gait, i.e., the stance foot will be fixed at the origin.
Therefore, consider the embedding 1 : Q — Q, defined as g — (0,0, q); associated
with this embedding is a canonical projection 7 : Q, — Q.

We employ the impact model described in [16]; that is, plastic rigid-body impacts
with impulsive forces are used to simulate impact. In particular, impulsive forces are
applied to the swing foot when it contacts the ground. Let Y'(g,) be the x,z position
of the end of the non-stance leg relative to the x,z position of the stance leg (px, p;)
and let J(g,) = dY (g.) be the Jacobian of Y. The impact map gives the post-impact
velocity:

61: = Z(qe)q4, = (I_Dil (Qe)JT(Qe)(](Qe)Dil(Qe)JT(Qe))ilJ(qe))qg 4

with 7 the identity matrix.

In the bipedal walking literature, under the assumption of symmetric walking, it
is common to use a stance/non-stance notation for the legs [13] rather than consid-
ering the left and right leg separately; it is more intuitive to think of control design
for the legs in the context of stance/non-stance than left/right. To achieve this, the
legs must be “swapped” at impact. A coordinate transformation % (state relabeling
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Fig. 1: Configuration variables (a) and mass/length distribution (b) of the bipedal
robot, along with the output functions of the robot considered (c).

procedure) switches the roles of the left and right legs and is included in the reset
map:

aisox s = 5l 0] )

where
P(q) = dn(1(q)) Ze(1(q))d1(q)
with d7 the Jacobian of the projection 7 and d1 the Jacobian of the embedding 1.

Bipedal Robot Model. In this paper, we consider a 2-dimensional bipedal robot
with knees as illustrated in Fig. 1. The motivation for considering this specific model
is that it is simple enough to make the discussion of ideas related to human-inspired
control more concise, while being complex enough to display interesting behavior.
Using the previous constructions of this section, we explicitly construct a hybrid
model.

Hybrid Lagrangian: The 2D kneed biped with knees has four links, yielding a con-
figuration space Qg with coordinates: 6 = (6,7, Oy, Opip, Gnsk)T, where, as illustrated
in Fig. 1(a), O is the angle of the stance foot, O is the angle of the stance knee, 6y;,
is the angle of the hip and 6,4 is the angle of the non-stance (or swing) knee. Com-
bining this choice of coordinates with the mass and length distribution illustrated in
Fig. 1(b) (with parameters chosen from the table in Fig. 2(b)) yields a Lagrangian
Lg which depends on the parameters (lengths and masses) of the specific human
subject being considered (as discussed in Sect. 3). Finally, the unilateral constraint
is simply the height of the non-stance foot above the ground: Az (which again de-
pends on the parameters of the specific subject being considered). The end result is
that, given a bipedal robot model with parameters obtained from a specific subject,
we obtain a hybrid Lagrangian:

Lk = (Or,Lg,hR). (6)
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Hybrid System Model: From this hybrid Lagrangian we obtain a hybrid system
model for the robot with the parameters from a specific subject:

HC R = (Xr,Ur, SR, AR fR+ 8R)> (7)

where here the domain and guard, Xz and Sg, are given by (2) and (3), respectively,
using the unilateral constraint function hg, Ug = R* since we do not put any restric-
tions on the set of admissible controls and assume full actuation, and Ag, is given by
(5) with relabeling matrix:

11-1-1
000 1
7= 00-1 0 |’ ®)

010 O

which switches the stance and non-stance leg at impact. Note that we assume full
actuation because during the course of a human step, most of the time is spent in
domains where there is full actuation [7]. Moreover, methods for extending control
laws assuming full actuation to domains with underactuation have been discussed
in [14, 25, 26]. Also note that the methods discussed in this section can be used to
“automatically” generate a wide variety of bipedal robotic models (see [24] for 3
other single-domain models and [7] for the multi-domain case). Finally, to further
justify this point, we consider the case of underactuation at the end of Sect. 6 and
show that we can also obtain walking when the stance ankle, 6y, is not actuated.

3 Canonical Human Walking Functions

This section begins by discussing a human walking experiment. We use the data
from this experiment to motivate the introduction of canonical human walking func-
tions. Amazingly, these functions are very simple; they describe the solution to a
linear spring-damper system. The use of these functions is justified by fitting them
to certain outputs of the human computed from the experimental data, resulting in
very high correlation fits. We conclude, therefore, that humans display very simple
behavior when the proper outputs are considered.

Human Walking Experiment. Data was collected on 9 subjects using the Phase
Space System, which computes the 3D position of 19 LED sensors at 480 frames
per second using 12 cameras at 1 millimeter level of accuracy. The cameras were
calibrated prior to the experiment and were placed to achieve a 1 millimeter level of
accuracy for a space of size 5 by 5 by 5 meters cubed. Six sensors were placed on
each leg at the joints; a sensor was placed on each leg at the heel and another at the
toe; finally, one sensor was placed at each of the following locations: the sternum,
the back behind the sternum and the belly button (as illustrated in Fig. 2). Each
trial of the experiment required the subject to walk 3 meters along a line drawn on
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(a) Experimental Setup (b) Subject Parameters
Subject M S S3
Sex M M F
Age 22 30 23

Ht. (cm) | 169.5 | 170.0 | 165.5
Wt. (kg) [ 90.9| 69.1 | 47.7
my (kg) | 61.5| 46.7| 323
m; (kg) 9.1 6.9 4.8
m, (kg) 55 33 2.9
L, (cm) [ 40.1| 438 39.2
L.(cm) | 435 38.1| 37.6

Fig. 2: (a) Ilustrations of the experimental setup and sensor placement. Each LED
sensor was placed at the joints as illustrated with the dots on the right lateral and
anterior aspects of each leg. (b) The physical parameters of the 3 subjects considered
in this paper, together with the mapping of those parameters onto the robot being
considered (see Fig. 1(b)).

the floor. Each subject performed 12 trials, which constituted a single experiment.
3 female and 6 male subjects with ages ranging between 17 and 77 years, heights
ranging between 161 and 189 centimeters, and weights ranging between 47.6 and
90.7 kilograms. The data for each individual is rotated so that the walking occurs
in the x-direction, and for each subject the 12 walking trials are averaged (after
appropriately shifting the data in time). The collected data is available at [2].

In this paper, for the sake of simplicity of exposition, we will consider the data
for 3 of these 9 subjects. The parameters for these 3 subjects as they are used on
the bipedal robot can be found in the table in Fig. 2(b). To map the human parame-
ters that were experimentally determined to the robotic model being considered, the
standard mass distribution formula from [35] was used.

Human Outputs and Walking Functions. The fundamental idea behind obtaining
robotic walking from human walking data is that, rather than looking at the dy-
namics of the human, one should look at outputs of the human that represent the
walking behavior. By tracking these outputs in a robot, through their representa-
tion via canonical functions, the robot will display the same qualitative behavior
as the human despite the differences in dynamics. That is, we seek to find a “low-
dimensional” representation of human walking. To find this representation, we look
for “simple” functions of the kinematics of the human that seem to be representative
of walking, termed canonical human walking functions.

The specific choice of human outputs to consider depend on the bipedal robot. In
particular, and roughly speaking, for each degree of freedom of the robot there must
be an associated output. In addition, these outputs must not “compete” with each
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Fig. 3: The human output data and the canonical walking function fits for each
subject.

other, i.e., they must be mutually exclusive; formally speaking, this means that the
decoupling matrix associated with these outputs must be non-singular (as will be
discussed in Sect. 6). Motivated by intuition, and after the consideration of a large
number of human outputs, the four we have found to be most essential to walking
in the case of the robot being considered are:

1. The x-position of the hip, phip,
2. The slope of the non-stance leg, i.e., the tangent of the angle between the z-axis
and the line on the non-stance leg connecting the ankle and hip:

p fzs f P flip ’
where pﬁip is the z-position of the hip and p;, £ pflsf are the x and z position of
the non-stance foot, respectively,

3. The angle of the stance knee, Oy,

4. The angle of the non-stance knee, 6, .

These outputs can be seen in Fig. 1(c).
Visually inspecting the outputs as computed from the human data for the three

subjects, as shown in Fig. 3, all of the human outputs appear to be described by two
simple functions:

phip: )’H,I(EV) =W,

_ ) 9
Myst, Osic, Opsi - ya(t, o) = e~ (o cos(0nt) 4 azsin(ont) ) + o,

where o = (01, @, 03, Q4 &5 ). Moreover, these functions appear to be universal to
walking, in that all of the subjects considered in this experiment followed functions



Bipedal Robotic Walking from Human Data 11

of this form for the chosen outputs. Of special interest is the fact that yy ; simply
parameterizes time by the forward velocity (walking speed) of the human and yg >
is simply the solution to a linear mass-spring-damper system with constant exter-
nal forcing [12]. Thus, despite the complexity of the internal dynamics inherent to
walking, humans appear to act like a linear spring damper system parameterized by
the walking speed.

It is important to note that this universality continues beyond the robotic model
considered in this paper. In fact, we have found that this pattern continues for robots
with feet [25] and for 3-dimensional robots [24], i.e., the additional human outputs
that must be considered for these robots due to the additional degrees of freedom can
be described by yy » with a high degree of accuracy (a high correlation coefficient).

Data-Based Cost Function. Having obtained what we believe to be outputs char-
acterized by functions that appear to be canonical to human walking, it is necessary
to determine the specific parameters of these functions that best fit the human data.
While this can be done with a myriad of software programs, we describe the pro-
cedure to fit these functions in terms of minimizing a cost function; the reason for
explicitly stating the cost function is that this same cost function is used when con-
sidering hybrid zero dynamics, except that it is subject to constraints.

As a result of the universality of the human walking functions (9), we can con-
sider these functions for each of the subjects and each of the outputs specified above:
Dhip> Mngt» s, and 6. This yields the following four functions that we wish to fit
to the data for each subject:

Pﬁip(l, Vhip) =ym.1(t, Vhip)a mffsz(fa Onst) = Yu2(t, Oy, (10)
esal,c(tv axk) =YH?2 (ta ask)v er‘;isk(t’ ansk) = ,VH,Z(ta ansk)v

where, for example, O = (Ousi 15 Olpst 25 Olnst 35 Cinsl 45 Ost 5) 10 (9). The parameters
for the four output functions can be combined to yield a single vector of parame-
ters: O = (Vhip, Ongi, Olpsks Osk) € R!6 for each subject. These output functions can be
directly compared to the corresponding human data. In particular, from the human
walking experiment, we obtain discrete times, " [k], and discrete values for the out-
put functions: pﬁp[k], mt [k], 0! [k] and 0%, [k], for k € {1,...,K} C N with K the
number of data points.

Consider the following human-data-based cost function:

COStHD((X) = (1D
K

kZ (Bﬁhip (pgip (tH [k], Vhip) - p{;[ip [k])z + ﬁmnsl (stl (IH (k] Otnst) — manl [k] )2
=1

o, (0417 K] 040) — 81 K])% + Bo,, (655 (1" K] 0ut) — 671 K)?)
where each of the weightings, 3, are the reciprocal of the difference of the maximum

and minimum value of the human data for that output. Therefore, this cost function
is simply the weighted sum of the squared residuals. Clearly, this cost function de-
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Table 1: Table containing parameter values of the canonical human walking func-
tions for the 3 subjects together with the cost and correlations of the fits.

YH,1 =Vt
YH2 = e‘““(ocl cos(apt) + azsin(opt)) + 05
S | Fun. v o [05) o3 oy Os Cost | Cor.
1| phip | 1.1969 * * * * * 0.017 { 0.9995
Myl * 0.2021 | 7.8404 | 0.2248 | -0.80700.1871 0.9998
O * -0.0828 | 13.316 | 0.2073 | 4.1551 | 0.2574 0.9933
65k * -0.3809 [ -10.979 | -0.1966 | -0.4215 | 0.6585 0.9990
2| phip | 1.0104 * * * * * 0.029 { 0.9992
My * 0.2040 | 7.3406 | 0.2417 |-0.6368 | 0.2147 0.9999
O * -0.0800 | 13.379 | 0.0865 | 1.6614 |0.2198 0.9807
65k * -0.3914 {-10.516 | -0.1562 | -0.5243 | 0.6789 0.9995
3| phip | 1.2372 * * * * * 0.057 | 0.9990
My * 0.2618 | 7.2804 | 0.2615 |-0.6769 | 0.1490 1.0000
O * -0.1939 | 16.152 | 0.0745 | 4.9945 |0.3801 0.9561
6,5k * -0.3190 | 10.903 | 0.1539 |-1.0190 | 0.7790 0.9995

pends on the output data for a specific subject over the course of one step, together
with the choice of walking functions (10), but it is viewed only as a function of the
vector of parameters o = (vhip, Oust, Osie, Clusic ). To determine this vector of parame-
ters, we need only solve the following optimization problem:

o = argmin Costyp () (12)
acRl16

which yields the least squares fit of the data with the canonical walking functions;
again, the reason for restating this standard definition is that this same cost function
will be used in Sect. 5, but subject to specific constraints that ensure hybrid zero
dynamics. The parameters given by solving this optimization problem are stated in
Table 1 along with the cost (11) associated with these parameters. The correlations,
as given in the same table, show that the fitted walking functions very closely model
the human output data, i.e., the chosen human walking functions appear to be, in
fact, canonical. Indeed, the coefficients of correlation are all between 0.9561 and
1.000. The accuracy of the fits can be seen in Fig. 3.

4 Human-Inspired Control

In this section, we construct a human-inspired controller that drives the outputs of
the robot to the outputs of the human (as represented by canonical walking func-
tions). Moreover, we are able to make this control law autonomous through a pa-
rameterization of time based upon the position of the hip. The end result is a feed-
back control that yields stable walking when applied to the bipedal robot being
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considered. The aspects of this walking are discussed—specifically, the fact that the
outputs are not left invariant through impact—in order to motivate the introduction
of hybrid zero dynamics in the next section.

Output Functions. Based upon the canonical human walking functions, we define
the following relative degree one and two outputs for the bipedal robot being con-
sidered (see Sect. 2 for the robot and [21] for the definition of relative degree):

Relative Degree 1: Recall that the forward position of the hip of the human is de-
scribed by: pﬁip(t, Vhip) = Vhipt. Therefore, the forward velocity of a human when
walking is approximately constant, and we wish to define an output that will sim-
ilarly keep the forward velocity of the robot constant. Letting pffip(e) be the x-
position of the robot (which is computed through forward kinematics), the goal is
to drive: pﬁip — Vhip. With this in mind, we define the following actual and desired
outputs:

Ya,1(6,0) deﬁip(e)a Yd,1 = Vhip- (13)

Note that y, 1 will be a relative degree 1 output since it is the output of a mechanical
system depending both on position and velocity.

Relative Degree 2: We now consider the remainder of the outputs given in (10);
in particular, we consider the non-stance leg slope, m,,, the stance knee angle, O
and the non-stance knee angle, 6,4. The stance slope of the robot can be stated in
terms of the angles of the system through the use of kinematics, i.e., we obtain an
expression mkX (). Since the goal is for the robot to track the human outputs, we
consider the following actual and desired outputs:

mﬁsl (9) mzsl (l‘, ansl)
Ya2(0)=| 6% |, yaa(t) = | 0%(t,aq) |- (14)
6nsk Grtzlsk (l, (ka)

Since the actual output is only a function of the configuration variables for a me-
chanical system, it will be relative degree 2.

Parameterization of Time. The goal is clearly to drive y,1 — y41 and y,» —
ya,2. This could be done through standard tracking control laws [21], but the end
result would be a time-based, or non-autonomous, control law. This motivates the
introduction of a parameterization of time in order to obtain an autonomous control
law. This procedure is common in the literature [33, 34], and the parameterization
chosen draws inspiration from both those that have been used in the past in the
context of bipedal walking and the human data. Using the fact that the forward
position of the hip of the human is described by pﬁip(t7 Vhip) = Vhipt, for the human:

t = IJL‘J This motivates the following parameterization of time for the robot:
ip

R 0) — R o+
T(G):phlp( ) phlp( )’ (15)

Vhip
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where here pﬁip(eﬂ is the position of the hip of the robot at the beginning of a

step! with 8+ assumed to be a point where the height of the non-stance foot is zero,
i.e., hg(01) = 0, with hg the unilateral constraint for the hybrid Lagrangian %%
associated with the bipedal robot (6).

Control Law Construction. Using the parameterization of time, we define the fol-
lowing output functions, termed human-inspired outputs:

1 (97 9) = Ya,l (07 6) —Yd,1,
¥2(0) = a,2(0) —ya,2(7(0)),
which depend on the specific choice of parameters, «, for the human walking func-
tions, where y; is an output with relative degree 1 and y, is a vector of outputs all

with relative degree 2. For the affine control system (fg,gr) associated with the
robotic model being considered (7), we define the following control law:

w001 =100 ([ 00 0]+ [0 |+ Pl ]).

A7)

(16)

with L the Lie derivative and A the decoupling matrix:

AN LRy1(979)
A(Gve) B [LgRgLfRyZ(evg)} . (%)

Note that the decoupling matrix is non-singular exactly because of the choice of
output functions, i.e., as was discussed in Sect. 3, care was taken when defining the
human outputs so that they were “mutually exclusive.” It follows that for a control
gain € > 0, the control law u renders the output exponentially stable [21]. That is,
the human-inspired outputs y; — 0 and y, — 0 exponentially at a rate of €; in other
words, the outputs of the robot will converge to the canonical human walking func-
tions exponentially. In addition, since y; — 0, it follows that during the continuous
evolution of the system y, 1 = pﬁip — Vhip, 1.€., the velocity of the hip will converge
to the velocity of the human, thus justifying the parameterization of time given in
(19).

Applying the feedback control law in (17) to the hybrid control system modeling
the bipedal robot being considered, .77 € g as given in (7), yields a hybrid system:

A = (Xp, Sk, Ar, £, (19)
where, Xz, Sg, and Ag are defined as for /7€, and

flga’g)(67 9) = fR(B,G) +gR(6a 9)“(6’0)’

I Note that we can assume that the initial position of the human is zero, while this cannot be
assumed for the robot since the initial position of the hip will depend on the specific choice of
configuration variables for the robot.
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where the dependence of flga'g) on the vector of parameters, ¢, and the control gain
for the input/output linearization control law, €, has been made explicit.

Partial Hybrid Zero Dynamics. In addition to driving the chosen outputs to zero,
i.e., driving the outputs of the robot to the outputs of the human, the control law (17)
also renders the (full) zero dynamics surface:

Zo=1{(6,0)€TQ:y1(8,0)=0, y2(8) =0, Lyy2(6,6)=0}  (20)

invariant for the continuous dynamics; here, 0 € R3 is a vector of zeros and we make
the dependence of Z, on the set of parameters explicit. This fact is very important
for continuous control systems since once the outputs converge to zero, they will
stay at zero. The difficulty of ensuring these conditions in the case of hybrid systems
will be discussed in Sec. 5. In particular, in the case of the robot considered in this
paper, we will seek only to enforce the zero dynamics surface related to the relative
degree 2 outputs. We refer to this as the partial zero dynamics surface, given by:

PZy,={(6,0) €TQ:y2(6)=0, Ls,y2(0,6) =0} 21

The motivation for considering this surface is that it allows some “freedom” in the
movement of the system to account for differences between the robot and human
models. Moreover, since the only output that is not included in the partial zero dy-
namics surface is the output that forces the forward hip velocity to be constant,
enforcing partial hybrid zero dynamics simply means that we allow the velocity of
the hip to compensate for the shocks in the system due to impact.

As a final note, the partial zero dynamics surface is simply the zero dynamics
surface considered in [33]; that is, in that reference and all of the supporting papers,
underactuation at the stance ankle is considered (this case will be addressed, in
the context of human-inspired control, in Sect. 6). It is exactly the stance ankle
that we control via the output y;. Thus, in essence, the partial zero dynamics is
just the classical zero dynamics surface considered in the bipedal walking literature.
Therefore, if parameters can be determined that render this surface invariant through
impact, the system will evolve on a 2-dimensional zero dynamics manifold. The
main differences separating this work from existing work is that the shape of the
zero dynamics surface—as determined by the human outputs and the parameters of
the human walking function—is chosen explicitly from human data.

Robotic Walking without Hybrid Zero Dynamics. To demonstrate that it is possi-
ble to obtain human walking with the human-inspired outputs, we manually looked
for periodic orbits for the hybrid system JfR(a’g), with o a vector of parameters as
“close” as possible to the vector of parameters a* solving the optimization problem
(12). In particular, we considered Subject 1 and his corresponding mass and length
parameters (Fig. 2(b)). We found that by only changing o for m,,y in Table 1 from
0.1871 to 0.0623, and picking € = 20, we were able to obtain a stable periodic orbit,
i.e., a stable walking gait, as seen in Fig. 4. The stability of the periodic orbit was
checked by numerically computing the eigenvalues of the Poincaré map; the mag-
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Fig. 4: Walking obtained for Subject 1 without hybrid zero dynamics, with (a)-
(b) the actual and desired outputs vs. the human output data over one step, (c) the
periodic orbit and (d) the tiles (or snapshots) of the walking gait.

nitude of these eigenvalues and the corresponding fixed point can be found in Fig.
7. Finally, a movie of the walking can be found at [1].

The robotic walking shown in Fig. 4 allows one to draw some important conclu-
sions. Despite the fact that the parameters ¢ used to obtain the walking are almost
identical to the parameters obtained by fitting the canonical output functions to the
human data, as seen in Figs. 4(a)-(b), the outputs of the robot are dramatically differ-
ent than those seen in the human data. This is a direct result of the fact that the zero
dynamics surface Z, is not invariant through impact, i.e., there are not hybrid zero
dynamics. Therefore, at impact, the robot is thrown off the zero dynamics surface,
resulting in the parameterization of time, 7, becoming highly nonlinear. Since the
other desired functions depend on this parameterization, this changes the shape of
these functions in a nonlinear fashion and thus the shape of the zero dynamics sur-
face. Moreover, the fact that the control law tries to drive the outputs to zero means
that after impact a spike in both velocity and torque occurs (the angular velocity
after impact exceeds 12% as seen in Fig. 4(c)). The end result is that while this
control yields stable walking, it is unrealistic in a physical context. In order to solve
this issue, it is clearly necessary to determine conditions that guarantee that the zero
dynamics are invariant through impact.
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5 Partial Hybrid Zero Dynamics for Human-Inspired Outputs

The goal of this section is to find parameters that result in partial hybrid zero dy-
namics (PHZD) while best fitting the human walking data. The main result is that
we are able to formulate an optimization problem, only depending on the parameters
«, that guarantees PHZD. We demonstrate this optimization problem on the human
subject data, showing that we are able to simultaneously achieve PHZD and very
good fits of the human data with the canonical human walking functions.

Problem Statement: PHZD. The goal of human-inspired PHZD is to find parame-
ters a* that solve the following constrained optimization problem:

o = argmin Costyp () (22)
aeR1®
st Ar(SkNZg) C PZq (PHZD)

with Costyp the cost given in (11), Z,, the full zero dynamics surface given in (20)
and PZ,, the partial zero dynamics surface given in (21). This is simply the opti-
mization problem in (12) that was used to determine the parameters of the canonical
human walking functions that gave the best fit of the human output data, but subject
to constraints that ensure PHZD.

The formal goal of this section is to restate (PHZD) in such a way that it can be
practically solved; as (22) is currently stated, it depends on both the parameters, c,
as well as the state of the robot, (0, 9), due to the inclusion of the (full and partial)
zero dynamics surfaces Zy and PZ, in the constraints.

Position and Velocity from Parameters. To acheive the goal of restating (22) in
a way that is independent of state variables (position and velocity), we can use the
outputs and guard functions to explicitly solve for the configuration of the system
¥ (at) € Qg on the guard in terms of the parameters. In particular, let

Ha)=06 st {yflff;?)} = {g} : (23)

where % is the relabeling matrix (8). Note that ¥ () exists because of the specific
structure of the outputs, y,(Z#0), chosen. In fact, the reason for considering y, at
the point Z0 is because this implies that the configuration at the beginning of the
step is 67 = Z6 and thus 7(#0) = 0 implying that:

V2(#0) = ya2(#6) —ya2(0),

or there is a solution to (23) because of the simple form that y, takes at the point %Z6.
Also note that since solving for () is essentially an inverse kinematics problem,
the solution obtained exists, but is not necessarily unique. Therefore, a solution must
be picked that is “reasonable,” i.e., 6,7 and 6y, are in [—7,0], and that produces the
first time when the foot hits the ground, 7(3d(a)).
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Using 9(«), we can explicitly solve for velocities (). The methodology is to
solve for the velocities that are in the full zero dynamics surface Z, C PZ pre-
impact as motivated by the fact that solutions will converge to this surface expo-
nentially during the walking gait; thus, the velocities pre-impact will be sufficiently
close to this point even if we only enforce partial hybrid zero dynamics. In particu-
lar, let

R
Y(0) = {djyf‘zi?g’))} , (24)

with dpyip(0) and dy(0) the Jacobian of py;, and ys, respectively. It follows from
(13), (14), (16), and the fact that y, is a relative degree 2 output that

i(6,8) |_ y_ Vhip:|
|:LfRy2(979)] =r(6)e [ U *
Therefore, define

Ha) =Y 1 (d(a)) {V‘;;P} . (26)

Note that Y is invertible, again because of the specific choice of outputs, i.e., because
of the relative degree of the outputs y; and y.

PHZD Optimization. We now present the first main result of this paper. Using
(o) and ¥(a), we can restate the optimization problem (22) in terms of only
parameters of the system. Moreover, as will be seen Sect. 6, by solving the restated
optimization problem, we automatically obtain an initial condition corresponding to
stable periodic walking.

Theorem 1. The parameters a* solving the constrained optimization problem:

o = argmin Costygp () 27
ocR!16

st m(da)=0 (C)

dy) (% (a)) %P (%D («))d(a) =0 (C2)

dhg(®(a))d () <0 (C3)

yield partial hybrid zero dynamics: Ag(Sg NZg+) C PZyx.

Proof. Let a* be the solution to the optimization problem (27). By (C1) and (25),
(O (a*), ¥ (a*)) € Zg+. Moreover, by (23) (specifically, the fact that hg(®(a*)) =
0) and (C3), it follows that (¥ (a*), ¥ (a*)) € Sg. Therefore, (¥ (a*), H(a*)) € SgN
Zy+. Now, Zy+ and Sk intersect transversally since

Lyohr(9(a"), B (a")) = dhg(9(a")) D (a") <0
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by (C3). Since Zgy+ is a 1-dimensional submanifold of Xg, it follows that Sg N Z >+
is a unique point. Therefore, (9(a*), d(a*)) = Sk NZg>.

To show that Ag(Sg NZg+ ) C PZg+ we need only show that Ag((a*), 3 (a*)) €
PZ-. Since
RO (o)

Ar(D(07). (@) = | 5 (3 (a*)) B (ar”)

from (5), the requirement that Ag(d(a*), ¥ (a*)) € PZg- is equivalent to the fol-
lowing conditions being satisfied:

»2(Z%(a*)) =0, (28)
Ly (29(a"), 22 (8(a")) (")) = 0. (29)

By the definition of ¥ ("), and specifically (23), (28) is satisfied. Moreover,
LpynZ0(a*), 2P (9(a")d(a) = dy2(Z V(") R P (0 (")) (o)

Therefore, (29) is satisfied as a result of (C2). Thus we have established that Ag (SgN
Zy) CPZy-. O

Remark on Theorem 1. Note that if the goal was to obtain full hybrid zero dy-
namics: Ag(Sg NZg) C Zg, then the theorem would be exactly as stated, except
condition (C2) would become:

Y (%0 () %P (%0 () D () = [V?;P} . (€2)
We also numerically solved the optimization in this case, but while we were able
to find a solution, we were unable to accurately fit the human data; specifically, we
could fit all the human outputs well except the stance knee (the pattern repeated for
PHZD, but to a much smaller degree). We argue that this is due to differences in
the model of the robot and the human; thus, constraining the robot to evolve on the
1-dimensional surface, Z, is too restrictive to result in “good” robotic walking.

PHZD Optimization Results. By solving the optimization problem in Theorem
1, we are able to determine parameters a* that automatically guarantee PHZD

for the hybrid system c%’jéa*’g) modeling the bipedal robot. In addition to the con-
straints in Theorem 1, when running this optimization we added the constraint that
(¥ (a)) < t[K], with 1[K] the last time for which there is data for the human, i.e.,
the duration of one step; this ensures that canonical human walking functions can be
compared to the human output data over the entire step. It is important to note that

this optimization does not require us to solve any of the dynamics for (%‘j;a’g) due
to the independence of the conditions (C1)-(C3) on state, i.e., they can be computed
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Fig. 5: The human output data and the canonical walking function fits for each
subject obtained by solving the optimization problem in Theorem 1.

in closed form from the model of the robot. Therefore, the optimization in Theorem
1 can be numerically solved in a matter of seconds?.

The results of this optimization can be seen in Fig. 5, with the specific parameter
values given in Table 2. In particular, note that with the exception of the stance
knee Oy, all of the correlations are between 0.9850 and 0.9995, indicating that an
exceptionally close fit to the human data is possible, even while simultaneously
satisfying the PHZD conditions. The stance knee is an exception here; while the fits
are still good, they have slightly lower correlations. This is probably due to the fact
that the stance knee bears the weight of the robot, and hence is more sensitive to
differences between the model of the robot and the human. That being said, it is
remarkable how close the canonical human functions can be fit to the human data
since the constraints depend on the model of the robot, which obviously has very
different dynamics than that of the human.

6 Automatically Generating Stable Robotic Walking

This section demonstrates through simulation that the parameters o* solving the
optimization problem in Theorem 1 automatically produce an exponentially stable
periodic orbit, i.e., a stable walking gait, for which (¥ (a*), % (a*)) is the fixed
point. That is, using the human data, we are able to automatically generate param-
eters for the controller (17) that result in stable walking for which the partial zero
dynamics are hybrid invariant. We also demonstrate the extensibility of the canoni-
cal human walking functions by showing that they also can be used to obtain stable

2 Note that the optimization problem is prone to local minima, so it is likely that there are better
fits to the human data than reported.
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Table 2: Parameter values of the canonical walking functions for the 3 subjects,
obtained by solving the optimization problem in Theorem 1, together with the cost
and correlations of the fits.

YH,1 =Vt
YH2 = €7a4t((X1 cos(onat) + azsin(opt)) + 05

S | Fun. v o [07%) a3 oy 05 Cost Cor.
1| pnip | 1.1534 * * * * * 0.2152 | 0.9995
Myl * 0.1407 | 7.7813 | 0.1332 | -2.2899 | 0.2359 0.9940
O * -0.1942 | 9.1241 | 0.8089 | 11.490 {0.2290 0.9185
0,151 * -0.3248 | 9.2836 | 0.4103 | -0.2790 | 0.5517 0.9960
2| phip | 0.9812 * * * * * 0.3055 | 0.9992
Myl * 0.0731 | 8.1450 | 0.1355 | -2.6624 | 0.2774 0.9850
O * -0.1677 | 11.852 | 0.2684 | 6.3379 {0.2010 0.9074
0,151 * -0.3667 | -8.8272 | -0.4053 | -0.1707 | 0.5662 0.9959
3| pnip | 1.2287 * * * * * 0.2949 { 0.9990
Myl * 0.0876 | 7.9627 | 0.0552 |-4.2023 | 0.3517 0.9944
O * -0.3283 | 10.279 | 0.5051 | 11.273 {0.3638 0.8877
05k * -0.2432 | 8.6235 | 0.4105 | -0.9881 | 0.6053 0.9947

robotic walking in the case of underactuation at the stance ankle. Thus, the ideas
presented here are not fundamentally limited to fully actuated systems (unlike other
popular methods for producing robotic walking such as controlled symmetries [27]
and geometric reduction [6], which build upon principles of passive walking [18]
and require full actuation to modify the Lagrangian of the robot).

Walking Gaits from the PHZD Optimization. Before discussing the simulation
results of this paper, we justify why robotic walking automatically results from solv-
ing the PHZD Optimization in Theorem 1. In particular, let o* be the solution to the
optimization problem (27) in Theorem 1. Then the claim is that there exists an € > 0

such that for all € > € the hybrid system %’j;aﬁs) has a locally exponentially stable
periodic orbit Gy+ C PZg+. Moreover, (O (a*), ¥ (a*)) € Sg N Zg+ is “sufficiently”
close to the fixed point of this periodic orbit and 7(9¥(a*)) > 0 is “sufficiently” close
to its period. Informally speaking, this follows from the fact that for full hybrid zero
dynamics, i.e., Ag(SkNZ¢y) C Zg, these statements can be proven by using the low
dimensional stability test of [33] (with the restricted Poincaré map being trivial),
coupled with the fact that points in PZg+ will converge exponentially fast to the sur-
face Zy+. We justify these statements further through the use of simulation results.

Robotic Walking with PHZD. To demonstrate how we automatically generate
robotic walking from the human data, we do so for each of the subjects consid-
ered in this paper. In particular, consider the bipedal robot in Fig. 1 with the mass
and length parameters specific to each of the three subjects according to Fig. 2,

from which we construct a hybrid system model, Jfk(?’a with i = 1,2, 3, for each

according to (19) utilizing the human-inspired controllers. Applying Theorem 1,

(o &)

we automatically obtain the set of parameters ¢ such that 7, is guaranteed to
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Fig. 6: The human data compared to the actual and desired canonical human walking
functions for the 3 subjects over one step with the parameters that guarantee PHZD
as determined by Theorem 1 (left and middle column), along with the corresponding
periodic orbits (right column) and tiles of the walking for each subject (bottom).
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(a) Eigenvalues (b) Fixed Points
~ Sub. 5] 5 51 S5 5]
S1-NHZ * ! Type | NHZD | PHZD | PHZD | PHZD | HZDU
S1-PHZD % ! 0,7 | 0475 | 0469 | -0.444 | 0599 | 0386
‘ 2

S2-PHZ I | O 0.255 | 0227 | 0.199 | 0.362 0.119
ehip -0.681 | -0.637 | -0.610 | -0.703 | -0.747

S3-PHZDH ! 56 | 0187 | 0035 | 0.033 | 0.036 | 0545
S1-HZD! & & : 6‘” -1.703 | -1.492 | -1.337 | -1.788 | -0.620

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6 | 0331 0020 | 0114 | 0020 | -1.853
Opip | -0.748 | -0472 | -0220 | 0462 | 5.943

Eigenvalue Magnitude
igenvalue Magnitude 6,0 | 2764 | 3.065 | -2.556 | 5364 | -8.404

Fig. 7: The magnitude of the eigenvalues (a) associated with the periodic orbits with
fixed points (b) for Subject 1 in the non-HZD case, Subject 1-3 in the case of PHZD,
and Subject 1 in the underactuated HZD case.

have partial hybrid zero dynamics. Moreover, the explicit functions used to compute
this vector of parameters automatically produces the point (9 (e*), 3(0o;*)) that, as
will be seen, is a fixed point to an exponentially stable periodic orbit. Thus, for each
of the subjects, using only their physical parameters and walking data, we automat-
ically and provably obtain stable walking gaits.

The walking gaits that are obtained for each of the subjects through the afore-
mentioned methods can be seen in Fig. 6, where the walking is simulated over the
course of one step with € = 20. The specific periodic orbits can be seen in the right
column of that figure with the fixed points given in Fig. 7. Moreover, stability of the
walking is verified by computing the eigenvalues of the Poincaré map; these values
can also be found in Fig. 7. Note that, unlike the robotic walking in the case where
hybrid zero dynamics were not enforced (as discussed in Sect. 4), the velocities of
the robot are much more reasonable (with a maximum value of approximately 6%

for Subject 1 as opposed to exceeding 12% as in the non-HZD case). This is a
very interesting byproduct of the fact that the optimization appears to automatically
converge to a fixed point (9(e;), ¥(a;)) in which the non-stance leg is essentially
locked at foot impact (9 (o), ~ 0), and thus the shocks due to impact are natu-
rally absorbed by the mechanical components of the system rather than having to be
compensated for through actuation. This can be visually verified in the tiles of the
walking gait in Fig. 6 and perhaps, even better, in the movies of the robotic walking
obtained (see [1]).

There are some noteworthy aspects of the relationships between the robotic walk-
ing obtained and the human data from which it was derived. In particular, as can be
seen in the left and middle columns of Fig. 6, the actual and desired relative degree
2 outputs agree for all time; thus partial hybrid zero dynamics has been verified
through simulation, and the canonical walking function fits produced by Theorem 1
(as seen in Fig. 5) are the actual outputs of the robot. In addition, while the relative
degree 1 output is not invariant through impact, its change is so small that it cannot
be seen in the plots. It is interesting to note that the largest deviation from the human
outputs is at the beginning and at the end of the step. This makes intuitive sense: the
robot, unlike the human, does not have feet, so the largest differences between the
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Fig. 8: Walking obtained for Subject 1 with hybrid zero dynamics and underactu-
ation at the stance ankle, with (a)-(b) the actual and desired outputs vs. the human
output data over one step, (c) the periodic orbit and (d) the tiles (or snapshots) of the
walking gait.

two models occur when the feet play a more active role which, in the case of this
data, is at the beginning and end of the step (see [25] for a formal justification of
this statement). Moreover, the robot and the human react much differently to the
impact with the ground, which is again due to the presence of feet and the fact that
the robot is rigid while the human is compliant. Thus, the deviations pre- and post-
impact are largest due to these differences, and also due to the fact that in the robot
we enforce partial hybrid zero dynamics. All that being said, the agreement between
the outputs of the robot and the human output data is remarkable. It is, therefore,
reasonable to conclude that we have achieved “human-like” robotic walking. Read-
ers are invited to draw their own conclusions by watching the movie of the robotic
walking achieved by referring to [1] and related videos at [3].

Underactuated Human-Inspired HZD. To demonstrate the extensability of the
methods introduced in this paper, we apply them in the case when the robot being
considered is underactuated; specifically, the stance ankle cannot be controlled. This
is more “realistic” for the robot being considered due to the fact that it has point
feet. As will be seen, this restriction on the actuation of the robot will result in less
“human-like” walking, which naturally follows from the fact that humans actively
use their stance ankle when walking.

For the sake of brevity, we consider the hybrid system associated with Subject 1,
%a’g), where in this case we remove the actuation at the ankle. The control law
for this system therefore becomes the control law in (17) with the top row removed
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and with decoupling matrix A as in (18) again with the top row removed. Moreover,
in this case Zy = PZg, i.e., the full and partial hybrid zero dynamics are just the
classical hybrid zero dynamics as considered in [33]. Therefore, the optimization
problem in Theorem 1 ensures hybrid zero dynamics if (9(o), ¥ (c)) is an initial
condition to a stable periodic orbit. Note that, unlike the case with full actuation,
it is necessary to simulate the system to ensure that this is the case; as a result,
the optimization is dramatically slower (producing a solution in approximately 12
minutes as opposed to 10 seconds).

The end result of solving the optimization in Theorem 1 is a stable periodic orbit
with hybrid zero dynamics. The walking that is obtained can be seen in Fig. 8, where
the outputs of the robot and the human are compared, the periodic orbit is shown,
along with tiles of the walking gait. It is interesting to note that the behavior of the
walking in the case of underactuated HZD is substantially different than the walking
for fully-actuated PHZD. In particular, due to the lack of actuation at the ankle, the
robot swings its leg dramatically forward in order to push the center of mass in
front of the stance ankle. What is remarkable is that this change in behavior was
not hard coded, but rather naturally resulted from the optimization. This provides
further evidence for the fact that the human walking functions are, in fact, canonical
since they can be used to achieve a variety of walking behaviors.

7 Conclusions and Future Challenges

This paper presents the first steps toward automatically generating robotic walking
from human data. To achieve this goal, the first half of the paper introduces three
essential constructions: (1) define human outputs that appear characteristic of walk-
ing, (2) determine canonical walking functions describing these outputs, and (3) use
these outputs and walking functions, in the form of human-inspired outputs for a
bipedal robot, to design a human-inspired controller. We obtain parameters for this
control law through an optimization problem that guarantees PHZD and that explic-
itly produces a fixed point to an exponentially stable periodic orbit contained in the
zero dynamics surface. A 2D bipedal robot with knees is considered and these re-
sults are applied to experimental walking data for a collection of subjects, allowing
us to automatically generate stable robotic walking that is as close to the human data
as possible, i.e., walking that is as “human-like” as possible.

While the results of this paper are limited to a simple bipedal robot, human-
inspired controllers have been used to achieve robotic walking for 2D bipeds with
knees, feet and a torso [25] and 3D bipeds with knees and a torso [24] (illustrated
in Fig. 9). Yet formal results ensuring hybrid zero dynamics and proving the exis-
tence of a stable periodic orbit have yet to be established. The difficulty in extending
the results of this paper comes from the discrete phases of walking present in more
anthropomorphic bipedal robots due to the behavior of the feet [7]. On each do-
main human outputs must be defined and canonical walking functions determined
in such a way that, using only the human data, parameters for the corresponding
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Fig. 9: Tiles of the walking gaits obtained through the use of human-inspired outputs
for a 2D robot with feet, knees and a torso (top) and a 3D robot with knees and a
torso (bottom) utilizing the data for Subject 1.

human-inspired controllers can be determined so as to guarantee (partial) hybrid
zero dynamics throughout the entire step. This points toward a collection of chal-
lenging problems, the solutions for which could allow for the automatic generation
of human-like robotic walking from human data.

To provide concrete objectives related to the overarching goal of obtaining truly
human-like walking for anthropomorphic bipedal robots, as motivated by the ideas
related to this paper, we lay out a serious of “challenge problems” for human-
inspired bipedal robotic walking:

Problem 1: Obtain human-inspired hybrid system models of anthropomorphic
bipedal robots.

Problem 2: Determine outputs of the human to consider and associated human
walking functions that are canonical.

Problem 3: Use Problem 2 to design human-inspired controllers and obtain for-
mal conditions that guarantee hybrid zero dynamics (either full or partial).

Problem 4: Determine the parameters of these controllers automatically from hu-
man data using no a priori knowledge about the data.

Problem 5:  Provably and automatically produce stable periodic orbits, i.e., stable
walking gaits, that are as “human-like” as possible.

Importantly, the solutions of these problems must go beyond the task of achiev-
ing flat-ground straight-line walking, but rather should be automatically extensible
to a wide variety of walking behaviors, or motion primitives, e.g., walking up and
down slopes, stair-climbing, turning left and right, walking on uneven terrain. It is
therefore necessary to determine methods for transition between walking motion
primitives, formally encoded as solutions to Problems 1-5, so that stability is main-
tained. Finally, in order to truly demonstrate the validity of specific solutions to the
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challenge problems, it is necessary to ultimately realize them on physical bipedal
robots.

The solutions to these challenge problems would have far-reaching ramifications
for our understanding of both robotic and human walking. They would result in
bipedal robots able to produce the variety of walking behaviors that allow humans
to navigate diverse terrain and environments with ease, resulting in important appli-
cations to areas like space exploration. In addition, they would have potentially rev-
olutionary applications to all areas in which humans and robots interact to achieve
locomotion—from rehabilitation, prosthetic and robotic assistive devices able to
supplement impaired walking to aiding the walking of healthy humans through ex-
oskeleton design.
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