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The Mixed-Observable Constrained Linear Quadratic Regulator
Problem: the Exact Solution and Practical Algorithms

Ugo Rosolia, Yuxiao Chen, Shreyansh Daftry, Masahiro Ono, Yisong Yue, and Aaron D. Ames

Abstract— This paper studies the problem of steering a
linear time-invariant system subject to state and input con-
straints towards a goal location that may be inferred only
through partial observations. We assume mixed-observable
settings, where the system’s state is fully observable and
the environment’s state defining the goal location is only
partially observed. In these settings, the planning problem
is an infinite-dimensional optimization problem where the
objective is to minimize the expected cost. We show how
to reformulate the control problem as a finite-dimensional
deterministic problem by optimizing over a trajectory tree.
Leveraging this result, we demonstrate that when the en-
vironment is static, the observation model piecewise, and
cost function convex, the original control problem can be
reformulated as a Mixed-Integer Convex Program (MICP)
that can be solved to global optimality using a branch-
and-bound algorithm. The effectiveness of the proposed
approach is demonstrated on navigation tasks, where the
system has to reach a goal location identified from partial
observations.

Index Terms— Optimal control, observability, measure-
ment uncertainty.

[. INTRODUCTION

Advances in optimization theory and the availability of
open-source optimization solvers has revolutionized the field
of control theory over the past three decades. Modern control
algorithms leverage this technology to compute control actions
based on sensors measurements [1]-[7]. This strategy allows
the controller to constantly adapt and re-plan when distur-
bances and unexpected events occur, i.e., feedback is naturally
incorporated into the system.

Model Predictive Control (MPC) is a mature control tech-
nology that was enabled by recent developments in optimiza-
tion solvers [8]-[13]. In MPC, at each time step an optimal
planned trajectory and the associated sequence of control
actions are computed solving a finite-dimensional optimization
problem, where the cost function and constraints encode the
control objectives and safety requirements, respectively. Then,
the first optimal control action is applied to the system and
the entire process is repeated at the next time step based on
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the new measurement. This control methodology is ubiqui-
tous in industry, with applications ranging from autonomous
driving [14]-[16] to large scale power systems [17]-[19].

For deterministic discrete-time systems, an optimal trajec-
tory represented by a sequence of states and control actions can
be computed leveraging a predictive model of the system. On
the other hand, when uncertainties are acting on the system
and/or only partial state observations are available, it is not
possible to plan an optimal trajectory for the closed-loop
system, as the future evolution of the system may be affected
by external random phenomena and/or only a state estimate
may be available. In these cases, the controller should plan
the evolution of the system taking into account that in the
future new measurements will be available. More formally,
the controller should plan the future trajectory of the system
using a policy that is a function mapping the system’s state
to a control action. Unfortunately planning over policies is
non-polynomial time, even for the constrained linear quadratic
regulator problem when disturbances affect the system’s dy-
namics [20].

Several strategies have been presented in the literature to
ease the computational burden of planning over policies [21]-
[27]. When the system dynamics are subjected to disturbance
and the system’s state can be perfectly measured, the planning
problem can be simplified by computing affine disturbance
feedback policies that map disturbances to control actions.
This strategy was originally presented in the operational
research community [28] and it was analysed in an MPC
framework in [21], where the authors showed that there is a
one-to-one mapping between affine disturbance feedback and
affine state feedback policies. The idea of considering policies
that map disturbances to actions was leveraged also in the
system-level synthesis approach presented in [26]. Another
class of feedback policies is considered in tube MPC strate-
gies [22]-[25], where the control actions are computed based
on a predefined feedback term and a feed-forward component
that is computed online by solving an optimization problem.
Similar strategies may be used when only partial observations
about the system’s state are available [29]—-[31]. In this case,
the system’s state is not known exactly and estimation errors
should be considered when computing control actions.

The above mentioned strategies are designed for uni-modal
disturbances and measurements noise. When the uncertain-
ties are multi-modal, the controller should plan for different
modes of operations to reduce conservatism. For instance,
in autonomous driving a controller should plan a trajectory
for nominal road conditions, but it should make sure that a
safe backup maneuver is available when unexpected events



occur [32]-[34]. Planning over a trajectory tree, where each
branch is associated with different uncertainty modes, is a
standard strategy that has been leveraged in the literature
to synthesize controller that can handle multi-model distur-
bances [33]-[36], when perfect state feedback is available.

In this work, we introduce the mixed-observable constrained
linear quadratic regular problem. We assume that the system’s
state is fully observable and we model the partially observable
environment state, which represents the goal location, using a
hidden Markov model (HMM) [37]. The HMM is constructed
based on the system and the environment states and it allows
us to characterize the observation model that describes the
sensors accuracy. In our problem formulation, the system
and environment state spaces are assumed continuous and
discrete, respectively. For this reason, our approach generalizes
the strategy presented in [38], where the authors considered
mixed-observable systems with discrete state spaces.

As we consider systems with continuous state and action
spaces, the optimal control problem is an infinite-dimensional
optimization problem over the space of feedback polices,
where the objective is to minimize the expected cost. First,
we show how to reformulate the optimal control problem as a
deterministic finite-dimensional optimization problem over a
trajectory tree. The computational cost of solving this finite-
dimensional optimal control problem increases exponentially
with the horizon length, thus we introduce an approximation
which can be used to compute a feasible solution to the orig-
inal problem. Leveraging these results, we demonstrate that
through a nonlinear change of coordinates the original optimal
control problem can be approximated by solving a Mixed-
Integer Convex Program (MICP), when the environment is
static and the observation model is piecewise. As a corollary,
we show that when the observation model is constant the
value function associated with the optimal control problem is
convex. Finally, we test the proposed strategy on two examples
where the objective is to steer the system to a goal location
that can be inferred only through imperfect observations.

Notation: For a vector b € R”™ and an integer s €
{1,...,n}, we denote b[s| as the sth component of the vector
b, b indicates its transpose, M = diag(h) € R™ " is a
diagonal matrix with diagonal elements M{[s,s] = b[s], and
v = 1/b is defined as a vector v € R™ with entries v[s] =
1/b[s] for all s € {1,...,n}. For a function T : R" — R,
T'(b) denotes the value of the function T at b. Throughout
the paper, we will use capital letters to indicate functions and
lower letters to indicate vectors. The set of positive integers is
denoted as Zg; = {1,2,...}, and the set of (strictly) positive
reals as (R4 = (0,00)) Ro4 = [0, 00). Furthermore, given a
set Z and an integer k, we denote the kth Cartesian product
as Z¥ = Z x ... x Z. Finally, given a real number a € R we
define the floor function |a |, which outputs the largest integer
i = |a] such that i < a.

Il. PROBLEM FORMULATION

This section describes the problem formulation. First, we
introduce the system’s dynamics and the discrete model de-
scribing the partial observable environment. Afterwards, we
introduce the control problem under study.

System’s state at time ¢ = 2, after
observing o =0 at time ¢t = 1

\ o

@ Goalfore =0
@ Goalfore =1

System’s state at time ¢t = 1
A new observation is collected

N\

Starting state z(0) /‘ ®
Initial Belief b(0) = [0.5,0.5]"

System’s state at time ¢ = 2, after
observing o =1 at time t =1

Observation o € O = {0, 1}

Fig. 1. In the above example, the system has to reach a partially
observable goal location that is a function of the partially observable
environment state e. Notice the closed-loop trajectory is a function of
the observation collected at time step ¢t = 1.

A. System and Environment Models

We consider linear time-invariant dynamical systems of the
following form:

Tpy1 = Az, + Buy, )

where the state is x; € R", the input is ug € R<, and k indexes
over discrete time steps. Furthermore, the above system is
subject to the following state and input constraints:

ur € U CR? and 2, € X CR™,VEk > 0. )

Our goal is to control system (I} in environments repre-
sented by partially observable discrete states. In particular,
the environment evolution is modeled using a hidden Markov
model (HMM) given by the tuple H = (£,0,T, Z), where:

o £={1,...,|&|} is a set of partially observable environ-
ment states;
e O = {1,...,|O|} is the set of observations for the

partially observable state e € &;

e The function T : £ x &€ x R™ — [0,1] describes the
probability of transitioning to a state ¢’ given the current
environment state e and system’s state x, i.e.,

T(e e,x) :=P(e|e, ).

e The function Z : £ x O x R™ — [0, 1] describes the
probability of observing o, given the current environment
state e and the system’s state z, i.e.,

Z(e,0,x) :=P(ole, x).

As the environment state ey is partially observable, we
introduce the following belief vector: by, € B = {b € R(l)il :
Z‘f:ll ble] = 1}. The belief by, is a sufficient statistics and each
entry bg[e] represents the posterior probability that the state
of the system ej equals e € £, given the observation vector
ox = [01,...,0k], the system’s trajectory Xx = |21, ..., Tk,
the state 2(0) and the belief vector b(0) at time ¢ = 0, i.e.,

bi[e] = P(e|ok, Xk, z(0), b(0)).



B. Control Objectives

Given the environment belief b(¢) and system’s state x(t),
our goal is solve the following finite time optimal control
problem (FTOCP):

J(2(t), b(t))

N-1

Eoy_, [ k;) h(xy, ur, ex) + hy (2N, eN)‘b(t)]

St Xpgpq = Az + Buy,
Up = Wk(Ok,Xk,l‘(t),b(t)),
xo = x(t),
up €U,z € X,Vk €{0,...,N — 1},

= min
™

3)
where the stage cost h : R” x R? x £ — R and the terminal
cost hy : R"x & — R are functions of the partially observable
environment state e € &, and the expectation is over the
environment observations oN_1 = [01,...,0x_1], Which are
stochastic as discussed in Section In the above FTOCP,
the optimization is carried out over the sequence of control
policies ® = [mg,...,mn—1], and at each time k the policy
7 OF x X*+1 % B — R? maps the environment observations
up to time k, the system’s trajectory, and the initial belief b(t)
to the control action u. An example of a control task that can
be modeled using the FTOCP (3) is shown in Figure [I] where
the system has to reach a goal location that may be inferred
only through partial environment observations.

Computing the optimal solution to the FTOCP (3) is chal-
lenging as i) the environment’s state is partially observable,
i) our goal is to minimize the expected cost, and i)
the optimization is carried out over the space of feedback
policies, which are functions mapping states to inputs. Thus,
the optimization problem is infinite-dimensional as a function
cannot be represented by finite number of parameters. In what
follows, we show that the FTOCP @) can be reformulated
as a finite-dimensional non-linear program (NLP). Leveraging
the discrete nature of the set of observations O, we will
show that ) optimizing over feedback policies is equivalent
to optimizing over a tree of open-loop actions and i) the
expectation can be rewritten as a summation using the belief
vector. Furthermore, we show that when the environment is
static, the cost functions h(-,-,e) and hy(-,e) are quadratic,
and the observation function Z(e,o0,-) : R™ — [0,1] is
piecewise for all e € £ and o € O, then the FTOCP (3)
can be recast as a Mixed Integer Convex Program (MICP).

1. THE EXACT SOLUTION

This section shows how to reformulate the FTOCP (3) as a
finite-dimensional optimization problem.

A. Cost Reformulation

As discussed in Section the belief by is a sufficient
statistics for an HMM [37]. Therefore, at each time k the
belief can be computed using the observation oy, the system’s
state xy, and the belief at the previous time step bg_1, i.e.,

ZT €1, 2 )br—1[i]- )

€€

6 0k7xk

b =
kel P(og |k, be—1)

For more details about the belief update equation please refer
to the Appendix [VII-A] The above equation can be written in
compact form:

Ac(op, Tx)bp—1

b = ,
» P(ok|zk, br—1)

where P(og|zg,br—1) is a normalization constant and the
matrix A.(og,z) € RIEIXIEL which is a function of the
observations oy and the system’s state xj, at time k, is defined
as follows:

Ac(og, zr) = O(ok, x1)Qzk), )
where
T(1717xk) T(L |8|7xk)
T(27 7xk) T(27 |5|7xk)
ak) = : :
T(|€], 1, k) (€l €], zx)
and

@(ok,xk):diag([Z(l,ok,zk) Z(\f\,ok,wk)])-

Notice that, given the initial environment belief by = b(0),
the expected stage cost at time k£ = 0 is simply

> i

ec€f

EON—l[h(m())aneO |b0 CL’Q,U(),G).

Next, we show that the belief update equation (@) can be used
to rewrite the expectation of the stage cost as a summation.
The evolution of the system from problem (3) is deterministic,
therefore the expected cost at time k = 1 can be written as

Eon_, [M(x1,u1,€1)|bo, x1]

= Z IE01\171 [h(

T1,U, 61)|b07x17 01]P(Ol|flfl, bO)

01€0
= Z Zbl[e]h(xl,ul,e)]P’(01|x17b0)
01€0 ec&
= Z ZZ(e,ol,ml)ZT(e,i,azl)bo[i]h(JSl,u1,e)
01€0 e€E icE
= Z val[e]h(xl,ul,e)
01€0 ec&

(6)

where the unnormalized belief is

= Z(e,01,21) ZT(e,Lxl)bo[i].
icE

vy [e]

In equation (6), we first rewrote the expectation of the stage
cost at time k = 1 leveraging the belief b;, which is a function
of the observation o1, the system’s state x1, and the belief
bo. Then, we substituted the belief update equation (@). It is
important to underline that the expected cost in (6) is not a
function of the normalization constant P(01|z1, bg). This fact
will allow us to show that problem (3] can be reformulated as
a finite-dimensional MICP that can be solved with a branch-
and-bound algorithm, when the environment is static, the cost
function is convex, and the observation model is a piecewise.

The following proposition generalizes the result from (6).
In particular, we show that the expected cost from problem (3)
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Fig. 2. Tree of trajectories for N = 3, where at each time k there
are |O| = 2 possible observations. Each node represents the system’s
predicted state zy* and each edge the control action upk, which is
applied when the observation vector oy is measured.

can be rewritten as a summation over the discrete set of
possible observations OF.

Proposition 1. Consider the optimal control problem (3). The
expected cost can be equivalently written as
N—-1
Eon Zh(xk,uk,ek) + hn(zn,en)|bo

k=0
N—
Z Z ka elh(xg, ug, €) (N

k=0 o, €Ok ec€

1

where the unnormalized belief vi* = A.(og,xx)vp," and

the matrix A.(og, k) € RIEXIEL js defined in B®).
Proof: First we notice that, as the system dynamics are

deterministic, the expected stage cost at time step k£ can be
written as

EON—I [h(xk? Uk, 6k)|Xk, X, bO]

= Z EON—l [h

(g, Uk, €)Xk, To, bo, Ok P(0xk| XK, Zo, bo)

Oke(glC

= Z Zbk[e]h(xk,uk,e)IP’(ok\Xbxo,bo)
01(6(91C ec€

= Z ngk[e]h(ack,uk’e).
Okeok ecf

®)
In the above derivation we leveraged the independence
of the observations collected at each time step, i.e.,
P(ok|xk,x0,b0) = P(01|l‘1,1}0,b0) X . X P(0k|xk,x0,b0),
and we defined

Z(e, ok, Tk) Z T(e i,y )vp< il
€€

vp*[e] =

which can be written in compact form as ovp* =
Ae(ok, z)vp" . Finally, we notice that the derivation in (8)
holds also for the terminal cost function Ap. Therefore, we
have that the desired result follows from (8) and the linearity
of the expectation in equation (7). ]

Fig. 3. Tree of trajectories for N = 6, where every N, = 2 time steps
|©O] possible observations may be collected. Each node represents
predicted state sk“k) of the system and each edge the control action

J(k) , which is applied when the observation vector 6;y) is measured.

B. Deterministic Reformulation

In the previous section, we showed how to leverage the
beliefs associated with all possible observations to express
the expectation as a summation. In this section, we show
that the optimization carried out over feedback policies can
be reformulated as an optimization over a tree of open-loop
trajectories.

The control policy 7 : OF x X*+1 x B maps the vector of
observations oy = [o01,...,0;] € OF, the system’s trajectory,
and the initial belief by = b(0) to the control action u, i.e.,

Uk = ’/T(Ok, Xk, L0, bo)

Notice that the system dynamics from problem (@) are de-
terministic and therefore, given an initial condition x(¢) and
an initial belief b(¢), the control action at time & is a function
only of the observations vector ox. Thus, we define the control
action uy* € R™ associated with the observations vector
ok € OF, and we reformulate problem (3) as an optimization
problem carried out over the tree of control actions up* for
all o), € OF and k € {0,...,T}. Figure 2| shows a trajectory
tree associated with a tree of control actions, where there
are |O| = 2 possible observations. More formally, given the
environment belief b(¢) and the system’s state z:(t), we rewrite
problem (3) as the following FTOCP:

N-1
J(a:(t),b(t)):muin Z Z ngk[e}h(a:zk,ugk,e)

k=0 o, €Ok ec&

+ 2 D
oNEON ecé
s.t. lejrl = szk’l + Bug~,

xg ' = x(t),v5° = b(t),

(o]

kall = Ac(or11, TRk, )UR™,
“elU, k€ X,

Vok cOF vk e{o,...,N -1},

le]hn (2, €)

9)



where the vector of observations ox = [o1,..., 0] for all
ke {l,...,N — 1}, and at time k = 0 we defined oy =
o_1 = b(t), and O° = b(t). In the above problem the matrix
of decision variables is

N-—-1 k
ON—l] c Rdlemo 10| ’

— Oo
u=[ug®,...,uy

(10)

where at time k the control action uzk € R? is associated with
the observation vector o, € OF.

C. Practical Approach

The FTOCP (9) is a finite-dimensional NLP that can be
solved with off-the-self solvers. However, the computational
cost of solving (@) is non-polynomial in the horizon length as
the number of decision variables from (I0) grows exponen-
tially with the horizon length N. Indeed, at each time step k
the predicted trajectory branches as a function of the discrete
observation o, € O, as shown in Figure Q In this section,
we introduce an approximation to the FTOCP (@), where the
predicted trajectory branches every N, time steps, as shown
in Figure [3] This strategy allows us to limit the number of
optimization variables and, for a prediction horizon of N steps,
the computational burden is proportional to the ratio N/Nj.
In what follows, we first introduce an approximation to the
FTOCP (9). Then, we show that such approximation yields an
upper-bound to the cost of the FTOCP (9).

Given the current state z(t), the environment belief b(t),
the constant Ny, € Zg, and the prediction horizon N = PN,
with P € Zg4, we solve the following FTOCP:

J (1), b(t)

N—-1
. _5; 5; 5;
= min E E E 02" [e]h(s,)™, a,’ ™ e)
k=0 aJ(k)goj(k) ec&
~05(N) S5
+ E E 0, [elhn(sy s e)
aj(N>€Oj(N) ecé&
Bk 55— B (x
st.os Y = As ™V 4 Ba, '™,
o1 _0
zo = x(t), 7% = b(d),
=Oj(k+1) _ = S51) 1.)50i(k)
U1 = Cel0j(he1), 1041 > KV,

ap® e U, s
j(k) = [k/N],
Vo500 € 07 Wk € {0,..., N — 1},

€ X,

(1D
where for P = N/N, € Zo+ and j(k) = |k/N,| the matrix
of decision variables

_[,0 o Sj(x) Sj(N-1) dxS Pt NyofF
a=[ag°,...,ap,...,a’", ... ay'V]ER k=0 NolOI"

(12)
the vector of observations 05 N_1) = Op—1 = [01,...,0p_1],

and the matrix C,(oy,s,°* ", k) is defined as:

Ce (6j(kr)a S(Zj(kil) ; k)
A0y, s7<Y) I [K/N,] =t/N, and k > 0
Q> ) Otherwise '

(13)

Compare the FTOCP (@) with the FTOCP (TI). In the
FTOCP (@) we optimize over the tree of open-loop sequences
shown in Figure [2] and therefore the complexity of the
problem grows exponentially with the horizon length N.
Indeed, the matrix of optimization variables (I0) collects

N O)F = O(|OIN 1) control actions. On the other hand,
in the FTOCP (TI) we optimize over the tree of open-loop
sequences shown in Figure 3] and the matrix of optimization
variables (I2) grows exponentially with the ratio P = N/Nj,.
In particular, we have IV, 25;01 |OIF = O(|O|F~1) decision
variables which are collected in the matrix @) Therefore, in
the FTOCP (II) the user-defined constant N, may be used
to limit the computational complexity when planning over a
horizon N = PN,. As a trade-off, the optimal value function
J associated with the FTOCP (TT) only approximates the value
function J associated with the FTOCP (@). The following
theorem shows that the value function J is an upper-bound
to the value function J.

First, we introduce the set of observation vectors
M(ﬁj(k),k), which we will leverage to construct a feasible
solution to the FTOCP () using the optimal solution to the
FTOCP (TI).

Definition 1. Consider the vectors of observations

ok = [01,...,Ok] and Oj(k) = [51,...,6j(k)],

where j(k) = | k/Np]. Given the above vectors, we define the
following set:

./\/l((_)j(k),k') = {Ok S OF . vt S {1,. . .,k},
If Lt/NbJ = t/Nb, then
o1 = 0j(1),j(t) = [t/No]}.
The above set M (050, k) C OF collects all observation
vectors o € OF such that for t € {Ny, 2Ny, ..., (P —1)N}
the observation o, from the tree shown in Figure 2] equals
the observation 0;;) from the tree depicted in Figure
Less formally, we have that subset of observations collected
every Ny time steps {on,,02n,,---,0(p—1)n,} in Figure
are equal to the observation measured every [V, time steps
{01,02,...,0(p—1)} from Figure [3| as discussed in the fol-
lowing example.

Example 1. Let N = 4, N, = 2, P = N/N, = 2, and
O € {0,1}. Then, the vectors of observations oN_1 =
[01,02,03] € O3, 0jN—1) = 0op_1 = 01 € O and the sets
M(0,N — 1) = {[0,0,0],[1,0,0],[0,0,1], 1,0, 1]}
M(1,N —1) = {[0,1,0],[1,1,0], [0, 1,1], [1,1,1]}.
Theorem 1. Let C C R™ x B be the set of initial conditions
(x(t),b(t)) such that problem Q) is feasible. Then, we have

that for all (x,b) € C the value function (I1) is an upper-
bound to the value function ), i.e.,

J(@,b) < J(x,b),
for all (x,b) € C.

Proof: We show that an optimal solution to problem (TT)
can be used to construct a feasible solution to problem (9).



Let

OJ(k) * Oj(N—1),*

* OQ,* 0 ,*
L aZioo L S

a* = [ao N AT (14)

be the optimal sequence of inputs to problem (T1J), we define
the following candidate solution:

u = [, u ] e RO OF (1)
where for all k£ € {0,..., N — 1} the control action
upe® = a2 Yoy € M(B00), k), Y8500 € 07, (16)

Basically, the above sequence of candidate inputs are de-
fined only by the observations collected at time ¢t &
{Np,2Np,...,(P — 1)Np}. As a result, when the above
sequence of candidate inputs is applied to system (I several
branches of the trajectory tree from Figure [2] overlap and the
tree collapses to the one shown in Figure 3] Therefore, the
definition of the candidate inputs (I6) implies that for all

k €{0,..., N} we have that
S(Zj(k)7* ok’c ,Vog € M(OJ(k kj),V(_)j(k) S Oj(k), a7
where sp** € R™ is the state associated with the optimal

input sequence (I4) and z3*“ € R™ is the state associated
with the candidate solution (T5). Now notice that the system
dynamics, the input constraints, and the state constraints in
problems (9) and (TI) are independent of the belief vector
b(t). Therefore, the feasibility of the optimal solution (14)
for problem (T1I) implies the feasibility of the candidate
inputs (T3) and associated states (I7) for problem (9).

Finally, we show that the cost associated with the feasible
solution (I3) to problem (9) equals the optimal cost from (TT).
From definitions (3) and (I3), we have that

C.(o, SZJ(I‘)’ k) = Ao, 20°°), (18)

for all 0 € O and for all k € {Nb7 2Ny, ..., (P —1)Np}, and

C.(o, szj(k) " k)= Z Ac(o,z2%)  (19)
ocO

for all 6 € O and for all k € {1,...,N} such that
|i/Ny| # i/Np. Next, we define the following unnormalized
belief vectors:

_0; ¥
7,7 e BC RI€! and Che

0.1(k)7

“ecBcREL

which are associated with the optimal sequence of inputs (T4)
and the feasible sequence of inputs (I3)), respectively. Next,
we show by induction that

Ok EM(aj(k) 7k)

=O5(k) % Ok, C
v = ’Uk .

(20)

Assume that the above equation (20) holds, then from equa-
tion (T8) we have that for k+1 € {Ny, 2Ny, ..., (P—1)N,},
for all oy € M(8j(x), k) and for all 65 € ©I(k)

,Uo.l(k+1) *_ =C, /4: + 1) =05k »*

k41 (Ok+1, Sk+1

_ 5(10) N ~0j ()
= A, (ok+1,sk+1 )0y
—oy,c
§ , Yk

OkEM(aj(k) ,k})

= Ae(0k+17 xk+1)

>

Ok +1 EM(B5(k11),k+1)

21

Ok+1,C
k+1

Furthermore when equation (20) holds, from equation (T9) we

have that for all ox € M (0;x), k) and for all 6j(k) c 01k
B 2 O, op e SE b 1
= Z Ae 0k+1,32ﬁ)7 Jop
Ok+1€O
= Z Ae(Ok_i_l,J)Z:’f) Z Tt
0K+1€0 OkGM(ﬁj(k),k)
_ Ok+1,C
- > S
Ok +1EM(85(141),k+1)
(22)
for k+1¢€{1,...,N} such that | (i +1)/Ny] # (i +1)/Ns.
Now notice that by definition we have that 75° = wvg°,

thus from equations ZI)-(22) we conclude by induction that
equations (20) holds for all k¥ € {1,...,N — 1}. Finally,
we have that the equation (20), together with equations (T6)
and (T7), implies that

§ E OJ(k)’

5J<k)607(k) ec&

= > > YT wcleh(apet ugecie)

ﬁj(k)EOj(k) ecé OkeM((_)j(k) k‘)

OkC OkC Ok,C
E E auk776)

o EOk e€&

OJ(k)’ Oj(k) »* —
ak 76) -

(23)
and, therefore, the cost associated with the feasible solu-
tion (T3) equals the cost associated with the optimal solu-
tion (T4), thus we conclude that

J(z,b) < J(z,b),
for all (z,b) € C. [ |

IV. STATIC ENVIRONMENTS, PIECEWISE OBSERVATION
MODEL, AND QUADRATIC COST: THE EXACT SOLUTION

In this section, we consider problems with static environ-
ments, piecewise observation model, and convex cost function.
Under these assumptions, we show that problem (9) can be
reformulated as a Mixed-Integer Convex Program (MICP) that
can be solved to global optimality using the branch-and-bound
algorithm.

In what follows, we first introduce the problem set-up. Then,
we show how to reformulated problem (@) as a MICP.

Assumption 1 (Static Environment). The environment is
static, which in turns implies that the transition function 7'
is defined as follows:

T(e,e) =1,T(e;e) =0,Ve € E,Ve' € E,e # €.

Assumption 2 (Piecewise Observation Model). The obser-
vation model is a piecewise function of the system state x. In
particular, given R disjointed polytopic regions {X;}1*; such
that UR | X; = X, we have that:

Z(e,0,x) = M;(e, o) if x € X,

for a set of functions M, : £ x O — [0, 1].



Assumption 3 (Convex Cost Function). For a fixed environ-
ment state e € £, the stage cost h(-,-,e) : R” x R — R and
the terminal cost Ayn(+,e) : R® — R are quadratic, i.e.,
h(z,u,e) = [lz — 2|l + [lu — uf||r,
hy(@,e) = le = 2{ g
where the weighted square norm ||z||g = 2" Qz, and the
vectors zi”) € R™ and v\ € R? are defined by the user.
Assumption 4 (Strictly Positive Belief). All entries of the
belief vector b(t) are strictly positive, i.e., b(t) € By = {b €
Rlﬂ : Zlill ble] = 1}. Furthermore, we cannot observe the

true environment state e € £ from any state x € X , i.e
Plo =ele,z) = Z(e,0,2) : € x O x R™ — (0,1).

Given the system’s state z(¢) and the inverse belief vector
2(t) = 1/b(t) € RI€l, we define the following FTOCP:

IDIDY xk’“’“e

k=0 OkGOk ec&

+ zz’” e

onEON ec&
s.t. xk_H = Az + Buyx
xp = a(t), 25° = 2(b),
upc €U, a7k € X,
2ot = 200k Dilorn) 2207
O = La, (23%), Vi € {1,..., R},
Vk e{0,...,N —1},

= min
u,d

Vi(x(t), 2(t))

Ok+4+1 _

(24)
where the indicator function

1 If 2%« € X
Ty, (z2F) = k !
(") {0 Otherwise

and optimization variables

8 =059, ... 0% p] € {0, 1} RE= 101, (25)
u= [ugo U?VN 11] RdekN;[]l \O\k'

Notice that at each time & for the vector of observations oy, we
have that the integer variable 5% equals one if and only if the
state 2 € A;. In the above problem forall i € {1,...,R}
the entries of diagonal matrices D;(0) € RII*I€l are defined
as follows:

D;(o)[e,e] =1/M;(o,¢),Ve € E,Yo € O. (26)

The following theorem shows that, under Assumption [T}
[l problem ([24) is equivalent to problem (3). Furthermore,
problem (24) can be recast as a Mixed-Integer Convex Pro-
gram (MICP), which can be solved using a branch-and-bound
algorithm that computes upper and lower bounds solving
convex sub-problems.

Theorem 2. Consider problem (@) and problem @ Let

. y _ 1€l el
Assumption [IH4| hold and b(t) € By = {b e Ry, : > .7 =
1}. Then, for z(t) = 1/b(t) we have that

J(2(t),0(t)) = V(x(t), 2(1)),

Sor all x(t) € X. Furthermore, for all z(t) € R‘f‘ and x(t) €
R"™ problem @4) can be recast as a Mixed-Integer Convex
Program (MICP).

Proof: First we show that zp* = 1/vp* for all k €
{0,..., N—1}. From Assumptlonm we have that for z;, € X;;
the unormalized belief update is

Z(e, ok, Tk) Z T(e,i)vy 1 [i]
€€

= Z(e, o,z

= M;(e, o)vp7" [e].

ekl =

27)

From the above equation and definition (26), we have that
zkle] = 1/vp*[e], Ve € &,

which in turns implies that the optimal cost from problem (24)
equals the one from problem (9) and therefore

J(2(t),b(t)) = V(x(t), 2(1),

for all z(t) € X.

Notice that the objective function in problem (24) is convex,
as it is given by a convex quadratic function over a strictly
positive linear function [39]. Furthermore, given the initial
condition z(t) we can compute an upper-bound Mj[e] € lel
for each eth entry of the unnormalized belief z,?k, ie.,

ae) = (

Finally, we have the piecewise model from Assumption [2]is a
mixed logical dynamical (MLD) systems [40], thus following
the procedure presented in [40] problem (24) can be recast as
a MICP using the upper-bound from (28). ]

Corollary 1. Consider problem @24) and let Assumptions [
hold. If the belief b(t) € By and the observation model is not
a function of the system’s state, i.e.,

Z(e,0,x) = G(e,0),Vr € X.

Then, the value function V (x(t),z(t)) from problem @234) is
convex in its arguments.

max

k—1
. Oo > Ok .
0€0,ie{1,...,R} DZ(O)) z5°[e] = zp*[e]. (28)

Proof: As the observation model is not dependent on the
system’s state, we have that problem (24) can be rewritten as

$ U 6
= min ZZZ ’“”“’

k=0 Okeok eef

+2th e

V(x(t), z(t

onEON ec&
st al, = Azt + Buje
xS t = a(t), 200 = 2(0),
el zpx € X,
lcc)ﬂ = F(ok+1)z",
Vk € {0,...,N — 1},

where F(o)[e,e] = 1/G(o,¢) for all e € £ and 0 € O. The
above problem is a convex parametric program and therefore
V(z(t), 2(t)) is a convex function [41]. [



Remark 1. In Corollary |I} we have shown that the value
function from problem @]) is convex. On the other hand, we
have that the value function from problem (9) is not necessary
convex. This fact suggests that it is easier to approximate the
value function from problem rather than one from (9). In
particular, we have that the nonlinear change of coordinates
that we used to define the inverse belief z(¢) allows us
to convexity the problem, when the environment is static,
the observation model constant, and the constraints and cost
convex.

Remark 2. The complexity of solving the MICP (24) grows
exponentially with the horizon N, and the computational bur-
den may be reduced using the strategy presented in Section T[]
where we assumed that an observation is collected every Ny
time steps. In this case, the computational complexity scales
with the ratio N/Ny, as we will show in the next section.

V. EXAMPLES

We tested the proposed strategy on two navigation problems,
where a linear system has to reach a goal location that may
be inferred only through partial observations.

A. Mixed Observable Regulation Problem

We consider the following discrete time point mass model:

1 01 0 0 0
01 0 1 0
Te+1= o o0 1 ol T |1 of u (29
0 0 0 1 0 1
where the state vector z;, = [Xj, Yy, vf,v}] collects the

position of the system (X}, Y},) and the velocity (vf,v}) along
the X-Y plane. In the above system the input u, = [af, a}]
represents the accelerations along the X and Y coordinates.
The state and input constraints are defined as follows:

U={ucR?:||ulle <10},
X ={[X,Y,v", ] €eR*: =5 < X < 15,]|Y||0o < 10},

and the cost function matrices from Assumption [3] are
Q =10""I,,R=10"31,, and Qn = 1021,

where I,, € R"*™ represents the identity matrix.

In this example, the environment is static and the set of par-
tially observable states £ = {0, 1}. Each environment state is
associated with a goal location as discussed in Assumption [3}
In particular, we have

14 14
xéo) = g and xgl) = -8
0 0

The environment state, and consequently the goal location, is
inferred though partial observations. Given the true environ-
ment state e € £ and the state of the system = € R”, the
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Fig. 4. Optimal trajectory computed solving the MICP for N = 60
and assuming that an observation is collected every N, = 30 time
steps, as discussed in Section [[-C] In this scenario p1 = p2 = 0.85,
therefore the optimizer computes a trajectory that first steers the system
towards the goals and then commits to one of the two goal locations
depending on observation measured at time t = N,

probability of measuring the observation o = e is given by
the following piecewise observation model:

P1 Ifl'EXl

Z(o=-e,e,z) =Po=c¢ele,x) = ,
Py =085 If z € Xy
(30)

where
X ={[X,Y, 0%, 0¥ eR*: =1 < X < 15,|Y]|oe < 10}
Xy = {[X,Y,v",v"] € R*: =5 < X < —1,[Y]|oc < 10},

We implemented the finite-dimensional MICP using
CVXPY [42] and Gurobi [43]. In order to limit the com-
putational burden, we leveraged the strategy discussed in
Remark 2] for N = 60 and N, € {12,15,20,30}. All
computations are run on a 2015 MacBook Pro and the code
can be found at https://github.com/urosolia/
mixed-observable—-LOR.

We tested the proposed strategy for two different scenarios.
In the first scenario, we set the probability p; of the observa-
tion model equal to 0.85, and in the second one we set
p1 = 0.7. In both cases, we considered an initial condition
x(0) = [0,0,0,0]T, a prediction horizon N = 60 and we
assumed that an observation is collected every N, = 30
time steps. Notice that in the first scenario the probability
p1 = p2 = 0.85, and the observations collected in regions
A and X, are equally informative. Thus, the optimizer steers
the system forward, and after receiving an observation at time
t = N commits to a goal location, as shown in Figure il On
the other hand, when p; = 0.7 the observation collected in
region A& is not as informative as the one collected in region
Xs. Therefore, the optimizer plans a trajectories that moves
backward and visits region A5 to collect an observations that
is correct with probability p; = 0.85, before committing to
steer the system towards a goal location, as shown in Figure[3]


https://github.com/urosolia/mixed-observable-LQR
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Fig. 5. Optimal trajectory computed solving the MICP for N = 60 and
assuming that an observation is collected every N, = 30 time steps,
as discussed in Section[ll-C] In this scenario p1 = 0.5, therefore the
controller steers the system backwards to reach regions X2 where the
observation is correct with probability 0.85, before committing to a goal
location.

Table [] shows the optimal cost and the computational
time to solve the MICP for different values of N, and for
N = 60. As discussed in Section [[II-C|, as P = N/N,
gets larger the optimization tree has more branches and,
consequently, the problem complexity increases. In particular,
the number of optimization variables v = 3o Np|O|*
grows exponentially as a function of P. Furthermore, in the
MICP the piecewise observation model is implemented using
I = ZkP;Ol |O|* integer variables which render the MICP
computationally expensive. For more details please refer to

the Appendix |VII-B

TABLE |
OPTIMAL COST V ((0), b(0)) AND SOLVER TIME FOR DIFFERENT
VALUES OF Np AND CONSEQUENTLY OF P = N/Njp,.

‘ Npy=12 Np,=15 N, =20 N, =30
V(z(0),b(0)) 1237.43 1583.31 2196.75 3265.31
Solver Time [s] 134.1 12.1 2.8 1.7
P = N/N, 5 4 3 2

Finally, we compare the optimal trajectories for N = 60,
N, € {30,12}, and p; = 0.7. Figures show the optimal
trajectories for Ny = 30 and N, = 12, respectively. Notice
that both trajectories are computed for a horizon of N = 60
time steps and the constant N, € {12,30} determines how
often an observation is collected, and therefore the number
of tree branches. When N, = 30, we have that the optimal
trajectory branches only at time ¢t = N, = 30 and only one
observation is collected. On the other hand, the trajectory from
Figure [6] is computed by setting N, = 12, and therefore the
trajectory branches at each time ¢ € {12, 24, 36, 48}, and four
observations are collected. It is interesting to notice that the
optimizer plans a trajectory that steers the system to region A5
to collect three observations, which are correct with probability
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Fig. 6. Optimal trajectory computed solving the MICP for N = 60

and assuming that an observation is collected every N, = 12 time
steps, as discussed in Section [-C] In this scenario p1 = 0.5 and
P = 5, therefore compared to Figure [B] the optimal tree of trajectories
is composed by more branches.

p2 = 0.85, before driving the system towards one of the
two goals. Furthermore, the optimal cost associated with the
trajectory from Figure [6] is lower than the one associated with
the trajectory from Figure [ as shown in Table [} This result
is expected as the approach presented in Section better
approximates the original problem when more observations are
collected along the planning horizon. Indeed, as we discussed
in Theorem |I| the value function associated problem (]EI)
where an observation is collected every NV, time steps, is an
upper bound to the value function of the original problem (3).

B. Partially Observable Navigation Problem

We tested the proposed strategy on the navigation task
shown in Figures In this example there are two obstacle
(black regions) and the objective is to regulate the system
to a goal location that can only be inferred through partial
observations. The observation model is piecewise and it is
defined as follows:

p1=05 IfxeX
=07 If X.
Z(o=¢e,e,z) =Plo=cle,z) = b2 ve >
Py =085 Ifze Xy
ps=085 Ifxredy
(31

where regions &, X5, X3, and X, are depicted in Figures |Z]»
@ Less formally, observations collected in region X are not
informative; on the other hand, in region X, the probability
that an observation is correct is po = 0.7, and the most
informative observations are collected in regions X3 and
Xy. Finally, the system evolution follows the discrete time
dynamics (29) and the cost function is defined by the following
matrices:

Q=10"*I,,R =10"2I;, and Qn = 101,

where I,, € R"*" represents the identity matrix.
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Fig. 7. Optimal trajectory computed solving the MICQ for N = 30
and N, = 10. The objective is to steer the system to the goal location
that is a function of the partially observable state e € {0, 1}, while
avoiding the two obstacles (black rectangles). In this scenario, the initial
belief bo = [0.8,0.2]T and the observation model is piecewise over
the regions X1, X2, X2, and Xj4.

We implemented the MICP using CVXPY [42] and
Gurobi [43]. Notice that the feasible regions is non-convex
as there are two obstacles in the environment. For this reason,
at time k we introduced integer variables to constraint the
state of the system xj to lie in either in A, Ay, A5, or
X,. For implementation details please refer the Appendix [VII-|
and/or the source code available at https://github.
com/urosolia/mixed-observable-LQOR.

We tested the proposed strategy for two initial belief vectors.
In both scenarios, we set a prediction horizon N = 30 and
the parameter N, = 10. Therefore, the optimal trajectory
computed solving the MICP branches at time ¢ = 12 and
time ¢ = 24. Figure [7] shows the optimal trajectory tree when
the initial belief by = [0.9,0.1]T. Although the observation
model (3T)) is less accurate in region X5 compared to re-
gions X3 and A, the optimizer plans a tree of trajectories
to collect the first observation is region X5. This plan results
in a direct path steering the system towards the top left corner
where the goal is located with high probability, as suggested by
the initial belief by = [0.9,0.1]T. On the other hand, when the
initial belief by = [0.5,0.5] T, the optimizer plans a trajectory
that collects observations only in regions X3 and Xy, as shown
in Figure [8] This result is expected as when we do not have
any prior on the location of the goal, an optimal strategy
should maximize the number of informative observations that
are collected in regions X3 and Xj.

VI. CONCLUSIONS

In this work, we introduced the mixed-observable con-
strained linear quadratic regulator problem, where the goal of
the controller is to steer the system to a goal location that may
be inferred only through partial observations. We showed that
when the system’s state space in continuous and the environ-
ment state discrete, the control problem can be reformulated as
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Fig. 8. Optimal trajectory computed solving the MICQ for N = 30
and N, = 10. The objective is to steer the system to the goal location
that is a function of the partially observable state e € {0, 1}, while
avoiding the two obstacles (black rectangles). In this scenario, the initial
belief bo = [0.5,0.5]T and the observation model is piecewise over
the regions &1, X2, X2, and Xj4.

a finite-dimensional deterministic optimization problem over
a trajectory tree. Leveraging this result, we shown that under
mild assumptions the control problem can be recast as a
MICP though a nonlinear change of coordinates. This result
suggests that in the new coordinate space the control problem
is easier to solve. In future work, we wish to investigate
the effectiveness of approximate dynamics programming and
reinforcement learning strategies that would benefit from the
proprieties of the value function in the new coordinate space.

VII. APPENDIX

A. Belief Derivation

The belief update equation (@) is derived using the total law
of probability and Bayes’s rule. In particular, we have that

P(Ok,xk,bk_l)
]P’(Ok|€, Tk, bk_1)P(6, Tk, bk—l)
]P’(ok,ack, bkfl)
P(okle, z)P(e, z, br—1)
P(Ok,xk,bk_l)
P(Ok|€, xk)P(e\xk, bk_l)]}”(xk, bk—l)
P(ox |2k, br—1)P(zx, br—1)
P(okle, zi)P(e|xy, bp—1)
P(ok|zk, br—1)
P(okle, z)P(e|zk, bp—1)
P(0k|xk, bkfl)
]P)(Ok|e’ xk) Zieg ]P(e|i, Tk, bk*l)P(ﬂxk, bk—l)
P(og|7x, br—1)

ZTezbk 1]

€€

bk[e] = ]P(€|Ok,l'k, bk*l) =

Z(e,or, x))
P(op|zx, br—1)
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For more details about the above derivation please refer to [37,
Chapter 3].

B. MICP Reformulation

In this section, we show how to rewrite problem (24) as a
MICP using the strategy from [40]. We assume that the disjoint
polytopic regions &; from Assumption 2| are boxeﬂ ie.,

Xi = {Z‘ ceR": Ian < fi}v
where the matrix
) T
I, = [dlag([l, , 1), 1])]

and the vector f; € R?™. We notice that, as the regions X; are
disjoint for all 7 € {1,..., R}, the constraints

—diag([1,..., € R™"

52‘; = ]lxi(xz“),w e{1,...,R}, (32)
can be rewritten as
Loy < Zl_lf,(S and Zl_ 6 =1.
Furthermore, we have that the following constraint
ok R oK {0
Zk++11 =2 i1 Di(okﬂ)zkk(sk,kz
can be rewritten as
o R o
Zkril =2 im Di(0k+1)yk7ki+la
o
yk:kz+1 < ’Zi,l'kl’la)(é‘](;/1(z
o .
g > e (33)
(o]
yka“ < zzk —m(l— 52};)
Ypi't = = M(1—6%)

where the auxiliary variables y.5"* € R™ for all k €
{0,. —1}and 7 € {1,..., R}. In the above expression,
the constants 2 from (28) and 2" = 0 are upper and lower
bounds to the inverse belief vector z*, respectively. For more
details about the above derivation please refer to [40]. Finally,
leveraging the above reformulations we have that problem (24)

can be rewritten as

. 73;@ auk; *e)
V(@(t), () = min Z >
k=0 o €Ok e€&
hN xN ,6)
vy
oNEON ecé
st apk ) = Azt + Bupk,
xg = x(t) z5° = z(t),
el x € X,
@),@),
Vk € {0,...,N — 1},

The above problem is a MICP than can be solved with
a branch-and-bound algorithm. In our examples, we used
CVXPY [42] and Gurobi [43] to solve the MICP. The code can
be found online at https://github.com/urosolia/
mixed-observable—-LOR.

I'This strategy can be used also when the regions X; are polytope. We
presented this spacial case to streamline the presentation. For more details on
the general case please refer to [40].
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