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Abstract— In this paper we present a multi-rate control
architecture for safety critical systems. We consider a high
level planner and a low level controller which operate at
different frequencies. This multi-rate behavior is described by a
piecewise nonlinear model which evolves on a continuous and
a discrete level. First, we present sufficient conditions which
guarantee recursive constraint satisfaction for the closed-loop
system. Afterwards, we propose a control design methodology
which leverages Control Barrier Functions (CBFs) for low level
control and Model Predictive Control (MPC) policies for high
level planning. The control barrier function is designed using
the full nonlinear dynamical model and the MPC is based on a
simplified planning model. When the nonlinear system is control
affine and the high level planning model is linear, the control
actions are computed by solving convex optimization problems
at each level of the hierarchy. Finally, we show the effectiveness
of the proposed strategy on a simulation example, where the
low level control action is updated at a higher frequency than
the high level command.

I. INTRODUCTION

Autonomous systems are designed to take control actions
upon sensing the environment around them. The decision
making process is usually divided into different layers. For
instance, in autonomous driving the top layer determines a
goal or intention, such as lane keeping, merging or overtak-
ing. Then, a high level planner computes a desired collision-
free trajectory, which is then fed to a low level controller that
computes the control action. Each layer operates at different
frequency and it is designed using model of increasing
accuracy and complexity.

Combining high level planners with low level controllers
has been extensively studied in literature [1]–[11]. Safety can
be guaranteed using low level filters which, given a desired
high level command, compute the closest safe control action
using control barrier functions [1]–[3] or feasibility of an
MPC problem [4]. The high level planner may be designed
using a simplified model and the planned trajectory can
be tracked using low level controllers. The tracking error
and the associated tracking policy can be computed using
Hamilton-Jacobi (HJ) reachability analysis [5] or sum-of-
squares programming [6], [7]. Finally, high level planning
and low level control can be implemented using nonlinear
tube MPC strategies [8]–[12], where the difference between
the planned trajectory and the actual one is over approxi-
mated using Lyapunov based analysis or Lipschitz properties
of the nonlinear dynamics.

In the aforementioned papers, the low level and high level
control actions are updated at the same frequency. In this
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Fig. 1. Representation of the multi-rate control architecture. The high level
planner computes the desired state x̄ and the high level command v. The
low level controller computes at higher frequency the action u.

paper, we consider a high level planner which operates at
a lower frequency than the low level controller. Multi-rate
strategies are used in several applications, for instance in
bipedal locomotion [13], [14], autonomous driving [15], [16]
and power grids [17], [18]. In this work, we introduce suffi-
cient conditions to analyze the closed-loop safety properties
of such control architectures. Our contribution is threefold.
First, we introduce sufficient conditions which guarantee
recursive constraint satisfaction for a multi-frequency high
level planning and low level control architecture, where the
high level planner can reset its internal state as a function
of the current state of the system. Second, we present a
control design which leverages CBFs for low level control
and MPC for high level planning. We show that when the true
system is nonlinear control affine and the planning model is
linear, then the proposed strategy is implemented solving
convex optimization problems. Third, we benchmark the
proposed strategy against linear and nonlinear MPC policies.
Simulation results demonstrate the benefit of the proposed
multi-rate architecture, where the low level control action is
updated at a higher frequency than the high level command.

This paper is organized as follows. In Section II we
introduce the problem formulation. Section III describes the
control architecture and the sufficient conditions which guar-
antee safety. The synthesis process is described in Section IV
and it is demonstrated on a numerical example in Section V.
Notation: The Minkowski sum of two sets X ⊂ Rn and
Y ⊂ Rn is denoted as X ⊕Y , and the Pontryagin difference
as X	Y . The set Ke is the set of extended class-Ke functions
β which are strictly increasing and β(0) = 0. Finally, given
a function f : Rn → Rm and a set X ⊂ Rn we denote the
set f(X ) = {y ∈ Rm : ∃ x ∈ X such that y = f(x)}.
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II. PROBLEM FORMULATION

This section introduces the system model and the synthesis
objectives. Consider a piecewise nonlinear model:

Σ :

{
ẋ(t) = f(x(t), u(t), v(t)), t ∈ T = ∪∞k=0(tk, tk+1)

x+(t) = ∆(x−(t)), t ∈ T c = ∪∞k=0{tk}
,

(1)
where the state x ∈ Rn, the set T collects the open intervals
from time tk to time tk+1 and its complement T c collects
the time instances tk. As a result, the above system (1)
evolves accordingly to the differential equation ẋ(t) =
f(x(t), u(t), v(t)) between time tk and time tk+1. On the
other hand, at time tk the system evolution is defined by the
reset map ∆(·), where x−(t) = limτ �t x(τ) and x+(t) =
limτ� t x(τ) are the right and left limits of a trajectory x(t)
which is assumed right continuous. Furthermore, we assume
that the input u ∈ Rd is a continuous function of the state x
and the input v ∈ Rd is a piecewise-constant function which
is updated when t ∈ T c, i.e.,

Π :

{
u(t) = πu(x(t), v(t)), v̇(t) = 0, t ∈ T
u+(t) = u−(t), v+(t) = πv(x+(t)), t ∈ T c

. (2)

The above control policies (2) in closed-loop with system (1)
results in a piecewise nonlinear autonomous system, which
evolves on a discrete and a continuous level.

Objective: Our goal is to steer the system from a starting
state xs to a goal state xg while satisfying the following state
and input constraints:

x(t) ∈ Xc ⊂ Rn, ∀t ∈ T ,
x+(t) ∈ Xd ⊆ Xc ⊂ Rn, ∀t ∈ T c,
u(t) ∈ U ⊂ Rd, v(t) ∈ V ⊂ Rd,∀t ≥ 0.

(3)

III. FRAMEWORK ARCHITECTURE AND PROPERTIES

In this section we present the multi-rate control archi-
tecture. First, we introduce an augmented model, which is
composed by the piecewise nonlinear system (1) and a high
level planning model. The latter is affected by the piecewise
constant input v and it is used to compute the planner state
x̄ ∈ Rn. Afterwards, the planned trajectory together with the
input v are fed to the low level controller which computes
the control action u, as shown in Figure 1.

A. Augmented System
The augmented system is defined as

Σx̄ :


ẋ(t) = f

(
x(t), u(t), v(t)

)
˙̄x(t) = fx̄(x̄(t), v(t))

, t ∈ T = ∪∞k=0(tk, tk+1)

x+(t) = ∆(x−(t))

x̄+(t) = ∆x̄(x−(t))
, t ∈ T c = ∪∞k=0{tk}

(4)
and the control actions are given by the policies

Πx̄ :

{
u(t) = πu

(
x(t), x̄(t), v(t)

)
, v̇(t) = 0, t ∈ T

u+(t) = u−(t), v+(t) = πv
(
x+(t)

)
, t ∈ T c

,

(5)
where T and T c are defined as in (4) and x̄ ∈ Rn represents
the planned state which is affected by the piecewise input v.

B. High Level and Low Level Properties
In this section, we define four properties associated with

the high level planner and low level controller. As we will
discuss later on, when these properties hold the closed-loop
system is guaranteed to recursively satisfy state and input
constraints (3).

Consider the closed-loop system (4)-(5) and let tk be the
time at which the kth discontinuous transition occurs, i.e.,
x+(tk) = ∆(x−(tk)) ∀k ∈ {1, 2, . . .}. We define the error
e = x− x̄ and we introduce the following error dynamics:

Σe :

{
ė(t) = fe

(
x(t), u(t), v(t), x̄(t)

)
, t ∈ T

e+(t) = ∆e(x
−(t)), t ∈ T c

, (6)

where T and T c are defined as in (4), and the reset map
∆e(·) is designed so that the following properties hold.

Property 1 (low level safety). The control policy πu(·)
from (5) guarantees low level safety for the closed-loop
system (4)-(5) and the set Sx ⊆ Xc ⊂ Rn, if ∀x+(tk) ∈
Sx ∩ Xd and ∀v+(tk) ∈ V we have that

x(t) ∈ Sx ⊆ Xc and u(t) ∈ U ,∀t ∈ (tk, tk+1). (7)

Basically, the above property guarantees that state and
input constraints are satisfied when the system evolves
smoothly between time tk and time tk+1. In particular, if
at time tk the state x+(tk) belongs to the set Sx ∩ Xd,
then the low level controller πu(·) guarantees state and input
constraint satisfaction until the next discontinuous transition
at time tk+1.

Property 2 (low level tracking). The control policy πu(·)
from (5) guarantees low level tracking for the closed-loop
system (4)-(5), the set Se ⊂ Rn and the set Sx ⊆ Xc ⊂ Rn,
if ∀e+(tk) = x+(tk) − x̄+(tk) ∈ Se, ∀x+(tk) ∈ Sx ∩ Xd
and ∀v+(tk) ∈ V we have that

e(t) = x(t)− x̄(t) ∈ Se,∀t ∈ (tk, tk+1). (8)

The low level tracking property ensures that the difference
between the planned trajectory and the true state is contained
into the set Se for all time t ∈ (tk, tk+1). The above
Properties 1-2 guarantee that the planned trajectory can be
safely executed by the true system.

Property 3 (high level safety). The control policy πv(·)
from (5) guarantees high level safety for the closed-loop
system (4)-(5), the set Se ⊂ Rn and the set Sx ⊆ Xc ⊂ Rn,
if for the initial conditions x(0) = x̄(0) + e(0) ∈ Sx ∩ Xd
and e(0) ∈ Se we have that πv(x+(0)) ∈ V and

z ∈ Sx ∩ Xd,
πv(z) ∈ V, ∀z ∈ ∆({x̄−(tk)} ⊕ Se),∀k ∈ {1, 2, . . .}.

(9)

Property 4 (high level tracking). The reset map ∆e(·)
from (6) guarantees high level tracking for the closed-loop
system (4)-(5), the set Se ⊂ Rn and the set Sx ⊆ Xc ⊂ Rn,
if for the initial conditions x(0) = x̄(0) + e(0) ∈ Sx ∩ Xd
and e(0) ∈ Se we have that

∆(z) = ∆x̄(z) + ∆e(z),

∆e(z) ∈ Se,∀z ∈ {x̄−(tk)} ⊕ Se,∀k ∈ {0, 1, . . .}.
(10)



It is important to underline that the above Properties 3-
4 are defined for the planning model at the discontinuous
transitions, i.e., at time tk for k ∈ {0, 1, . . .}. This fact
allows us to design a high level planner based on a discrete
time model, which describes the evolution of the planned
trajectory from x̄+(tk) to x̄+(tk+1).

C. Safety Guarantees

In this section, we show that when the control policies
from (5) satisfy Properties 1-4, the closed-loop system (4)-
(5) does not violate state and input constraints (3).

Theorem 1. Assume that Properties 1-4 are satisfied for the
closed-loop system (4)-(5), the set Se ⊂ Rn and the set
Sx ⊆ Xc ⊂ Rn. Let x(0) = x̄(0) + e(0) ∈ Sx ∩ Xd and
e(0) ∈ Se. Then, the closed-loop system (4)-(5) satisfies state
and input constraints (3) for all time t ≥ 0.

Proof: The proof proceeds by induction. Assume that after
the kth discontinuous transition x+(tk) ∈ Sx∩Xd, e+(tk) =
x+(tk)− x̄+(tk) ∈ Se and v+(tk) ∈ V , then by Property 1

x(t) ∈ Sx ⊆ Xc, u(t) ∈ U , ∀t ∈ (tk, tk+1). (11)

Furthermore, by Property 2 we have that at time tk+1

x−(tk+1) ∈ {x̄−(tk+1)} ⊕ Se.

The above equation together with Property 3 implies that

x+(tk+1) = ∆(x−(tk+1)) ∈ Sx ∩ Xd, v(tk+1) ∈ V.
(12)

Finally, from Property 4 we have

e+(tk+1) = x+(tk+1)− x̄+(tk+1) ∈ Se. (13)

The above equations (11)-(13) imply that, if x+(tk) ∈
Sx ∩ Xd, e+(tk) = x+(tk)− x̄+(tk) ∈ Se and v+(tk) ∈ V ,
then state and input constraints (3) are satisfied for all t ∈
(tk, tk+1). Furthermore, we have that the state x+(tk+1) ∈
Sx ∩ Xd, the error e+(tk+1) = x+(tk+1) − x̄+(tk+1) ∈ Se
and the input v+(tk+1) ∈ V .
Finally, by assumption x(0) = x̄(0) + e(0) ∈ Sx ∩ Xd and
e(0) ∈ Se, which imply from Property 3 that v(0) ∈ V .
Therefore, from equations (11)-(13), we conclude by induc-
tion that the closed-loop system (4)-(5) recursively satisfies
state and input constraints for all t ≥ 0.

Remark 1. We underline that guarantees from Theorem 1
hold when the control action u(t) is updated continuously.
However, in practice the control action is updated at a high
frequency, for instance at 1kHz in our simulations.

IV. SYNTHESIS: LEVERAGING CBFS AND MPC

In this section, we discuss how the properties from Sec-
tion III-B may be used to synthesize a safe controller. First,
we show that Control Barrier Functions (CBFs) may be
used to enforce low level safety and low level tracking.
Afterwards, we design a Model Predictive Controller (MPC)
to enforce high level safety and high level tracking.

We consider a control affine system where the input is
given by the summation of the continuous control action u
and the piecewise constant action v, i.e.,

Σa :

{
ẋ(t) = f

(
x(t)

)
+ g
(
x(t)

)(
u(t) + v(t)

)
, t ∈ T

x+(t) = ∆
(
x−(t)

)
, t ∈ T c

(14)
where T = ∪∞k=0(kT, (k + 1)T ), T c = ∪∞k=0{kT} and
1/T is the frequency at which the high level command is
updated. Furthermore, we assume the f and g are locally
Lipschitz continuous with respect to their arguments and that
the map ∆(·) is affine, as stated in Assumption 1. Finally,
the augmented model is given by

Σaz :


ż =

[
ẋ

˙̄x

]
= fa(z) + ga(z)(u+ v), t ∈ T

z+ =

[
x+

x̄+

]
=

[
∆(x−)

∆x̄(x̄−)

]
, t ∈ T c

. (15)

where we dropped the dependence on time t to simplify the
notation and the continuous evolution of the planning state
x̄ is described by linear dynamics, i.e., ˙̄x = Ax̄+Bv.

Assumption 1. The functions f and g are locally Lipschitz
continuous and the reset map ∆(·) from (14) is affine.
Consequently, the reset map ∆ can be written as ∆(x) =
Tx+p, for some matrix T ∈ Rn×n and some vector p ∈ Rn.

A. Control Barrier Functions
In this section, we show that CBFs [2] can be used to

enforce low level safety and low level tracking. Furthermore,
we introduce a Control Lyapunov Function (CLF) which is
used to reduce the tracking error. Finally, we combine CFBs
and CLF into a QP, which defines the low level control policy
from Figure 1.

First we define the following sets:

Sx =
{
x ∈ Rn : hx(x) ≥ 0

}
⊆ Xc ⊂ Rn,

Se = {e ∈ Rn : he(e) ≥ 0} ⊂ Rn,
(16)

which will be used to check if Properties 1-4 hold. The
above functions hx and he are designed by the user based on
the application, as shown in the result section. Furthermore,
we define ||x||Q = x>Qx and we introduce the candidate
Lyapunov function

V (z) = ||x− x̄||Qv
, (17)

which penalizes the deviation of the true system from the
planned trajectory.

Finally, the CBFs associated with the sets in (16), and
the CLF (17) are used to define the following CLF-CBF
Quadratic Program (QP):

min
u∈U,γ

||u||2 + c1γ
2

s.t.
∂V (z)

∂z
(fa(z) + ga(z)(v + u)) ≤ −c2V + γ

∂hx(x)

∂x
(f(x) + g(x)(v + u)) ≥ −α1(hx)

∂he(e)

∂z
(fa(z) + ga(z)(v + u)) ≥ −α2(he).

(18)



where e = x − x̄ ∈ Rn and z = [x>, x̄>]> ∈ R2n.
Furthermore, in the above QP c1 > 0, c2 > 0, α1 ∈ Ke
and α2 ∈ Ke. Let u∗(x, x̄, v) and γ∗(x, x̄, v) be the optimal
solution to (18), the low level policy is defined as

πu(x, x̄, v) = u∗(x, x̄, v). (19)

Assumption 2. The Quadratic Program (QP) (18) is feasible
for all z ∈ I = {z = [x>, x̄>]> ∈ R2n : he(x − x̄) ≥
0, hx(x) ≥ 0} and for all v ∈ V .

Proposition 1. Consider the system (15) and (19) with
v(t) ∈ V,∀t ≥ 0. If Assumptions 1-2 hold, then the control
policy (19) guarantees that Properties 1 and 2 are satisfied
for the sets Sx and Se from (16).

Proof: The proof follows from [2].

Remark 2. We underline that Assumption 2 is satisfied for
some α1 ∈ Ke and α2 ∈ Ke when the set I is robust control
invariant for system (4) and mild assumptions on the Lie
derivative of (4) hold (see [2] for further details). The set I
may be hard to compute and standard techniques are based
on HJB reachability analysis [5], SOS programming [7],
Lyapunov-based methods [8] and Lipschitz properties of the
system dynamics [11], [19].

B. Discrete Uncertain Model

The CLF-CBF QP (18) computes a control action which
constraints the difference between the planned trajectory and
the true system into Se. In this section, we leverage this
property to construct a discrete time linear uncertain model,
which over-approximates the evolution of the true system
from x+(tk) to x+(tk+1).

First, we define the following reset maps for the error and
planning dynamics from (15):

x̄+ = ∆x̄(x−) = ∆(x−) = x+

e+ = ∆e(e
−) = 0.

(20)

Basically, the above reset maps set the planning state x̄ equal
to the true state x, and consequently the error state e = 0
after each kth discontinuous transition. We underline that
setting x̄+ = x+ is a design choice. It would be possible to
design ∆x̄, ∆ and ∆e such that x+ − x̄+ = e+ and let the
high-level planner to select x̄+.

As the planning model is linear for all t ∈ (tk, tk+1), we
have that

x̄−(tk+1) = Āx̄+(tk) + B̄v+(tk), (21)

where the transition matrices are Ā = eAT and B̄ =∫ T
0
eA(T−η)Bdη. We notice that, when Assumptions 1-

2 hold, from Proposition 1 we have that x−(tk+1) ∈
{x̄−(tk+1)}⊕Se. Furthermore, from equations (20)-(21) we
have that

x+(tk+1) = ∆(x−(tk+1)) ∈ ∆({x̄−(tk+1)} ⊕ S̄e)
= {TĀx̄+(tk) + TB̄v+(tk) + p} ⊕ T S̄e
= {TĀx+(tk)) + TB̄v+(tk)} ⊕∆(S̄e),

(22)

where the polytope S̄e contains the set Se, i.e., Se ⊆ S̄e.
Equation (22) defines a discrete time uncertain linear system
which can be used to check if Property 3 is satisfied, as
stated by the following proposition. Notice that in (22) we
used the definition of ∆(·) from Assumption 1.

Proposition 2. Let Assumptions 1-2 hold. Consider the au-
tonomous discrete time uncertain system

x+
d (k + 1) = TĀx+

d (k) + TB̄πv(x+
d (k)) + w̄+

d (k)

x+
d (0) = x(0) = x̄(0) = x0,

(23)

where the control policy πv : Rn → V and the disturbance
w̄+
d (k) ∈ ∆(S̄e). If the state of the above system x+

d (k) ∈
Xd ∩ Sx, ∀w̄+

d (k) ∈ ∆(S̄e) and ∀k ∈ {0, 1, . . .}. Then
Property 3 is satisfied for the sets Sx and Se from (16) and
system (15) in closed-loop with

Πv
x̄ :

{
u(t) = πu

(
x(t), x̄(t), v(t)

)
, v̇(t) = 0, t ∈ T

u+(t) = u−(t), v+(t) = πv
(
x+(t)

)
, t ∈ T v

,

(24)
where πu is defined in (19) and πv is the control policy
from (23).

Proof: First, we recursively define the k-steps robust
reachable sets for the discrete time autonomous uncertain
system (23) and for k ∈ {0, 1, . . .}

Rk+1 = {x+ ∈ Rn :∃x ∈ Rk,∃w ∈ ∆(S̄e),
x+ = TĀx+ TB̄πv(x) + w},

where R0 = {x0}. Notice that by assumption Rk ⊂ Xd ∩
Sx, ∀k ∈ {0, 1, . . .}, πv : Rn → V , x(0) = x̄(0) = x0

and e(0) = 0. Finally, Assumptions 1-2 and equations (22)-
(23) imply that the state x(t) of the closed-loop system (15)
and (24) satisfies x+(tk) ∈ Rk ⊂ Xd∩Sx, ∀k ∈ {0, 1, . . .}.
Therefore, Property 3 is satisfied for the sets Sx and Se
from (16) and the closed-loop system (15) and (24).

C. Model Predictive Control

In this section, we design a Model Predictive Controller
that allows us to guarantee high level safety and high level
tracking from Properties 3-4. In particular, we leverage the
result from Proposition 2 and we design a robust tube MPC
with time-varying cross section as in [20].

At time tk given the state of the system x(tk) we solve
the following finite time optimal control problem:

min
vt

t+N∑
k=t

(
||xk|t − xg||Q + ||vk|t||R

)
+ ||xt+N |t − xg||Qf

s.t. xk+1|t = T (Ā+ B̄K)xk|t + TB̄vk|t

xt|t = x+(tk)

xk|t ∈ Xd ∩ Sx 	 Ek, vk|t ∈ V 	KEk
xt+N |t ∈ XF 	 Et+N ,∀k = {t, . . . , t+N}

(25)
where K is a stabilizing feedback gain, ||x||Q = x>Qx,
Ek+1 = T (Ā + B̄K)Ek ⊕∆(S̄e) and E0 = {0}. The above
control problem computes a sequence of open loop actions
vt = [vt|t, . . . , vt+N |t] which robustly steer system (23)



from the current state x(tk) to the terminal set XF , while
minimizing the nominal cost and robustly satisfying state
and input constraints [20]. Let v∗t = [v∗t|t, . . . , v

∗
t+N |t] be the

optimal solution and [x∗t|t, . . . , x
∗
t+N |t] the associated optimal

trajectory, then the MPC policy is

πv
(
x+(tk)

)
= v∗t|t +Kx∗t|t. (26)

Assumption 3. The terminal constraint set XF ⊂ Xd in (25)
is a robust positive invariant set for the discrete time uncer-
tain autonomous system x(k+1) = T (Ā+B̄K)x(k)+w(k)
with w(k) ∈ ∆(S̄e) for all k ∈ {0, 1, . . . }.

D. Closed-loop Properties

In this section, we show that Properties 1-4 hold for the
closed-loop system (15), (19) and (26) and the sets in (16).
Therefore, the closed-loop system satisfies state and input
constraints (3).

Theorem 2. Consider system (15) in closed-loop with (19)
and (26). Let Assumptions 1-3 hold. Assume that prob-
lem (25) is feasible at time t = 0, then the closed-loop
system (15), (19) and (26) satisfies state and input con-
straints (3) for all time t ≥ 0.

Proof: Notice that from Proposition 1 and equation (20),
we have that the closed-loop system satisfies Properties 1, 2
and 4. Moreover from standard MPC arguments [20], [21],
we have that the closed-loop system (23), where the control
policy πv(·) is the MPC policy (26), evolves inside Xd ∩Sx
and πv(x(tk)) ∈ V for all k ∈ {0, 1, . . .} (thus Property 3
hold). Concluding, Properties 1-4 are guaranteed for the
closed-loop system (15), (19) and (26) and state and input
constraints (3) are satisfied for all time t ≥ 0.

V. SIMULATION RESULTS

We use the proposed strategy to steer a Segway to a goal
state1, as shown in Figure 2. The state of the system are the
position px, the velocity vx, the rod angle θ and the angular
velocity ω. The control action is the voltage commanded to
the motor and the equations of motion used to simulate the
system can be found in [1, Section IV.B]. The nominal model
is obtained using a small angle approximation and the MPC
is implemented for Q = diag(0, 10−3, 10−3, 10−2), R = 1,
QF = diag(100, 100, 100, 200), V = {v ∈ R : ||v||∞ ≤ 20}
and K = [0,−7.3989,−10.435,−3.7039]. Finally, we im-
plemented the CLF-CBF (18) for Se = {e ∈ Rn : e>Qee ≤
1} with Qe = diag(1/0.22, 1/0.12, 1/0.052, 1/0.012), Xc =
Rn and U = R.

A. Unconstrained Example with Low Frequency Update

In this example, we run the high level MPC planner at
2Hz, we set Xd = Rn and the MPC horizon N = 10.
Figure 3 shows the closed-loop trajectories for the proposed
strategy, a linear MPC and nonlinear MPC policies, which
are implemented at 100Hz and 20Hz for prediction horizons
N100Hz = 500 and N20Hz = 100, respectively. All strategies

1Code available at https://github.com/urosolia/MultiRate

Fig. 2. The goal of the controller is to steer the Segway to a goal state
while keeping the rod upright. Furthermore, we reported snippets of the
state trajectory from Section V-A at 0.5s,1.5s and 2s.

plan the desired trajectory over a receding time window of 5
seconds. We notice that the linear MPC overshoots the goal
state and the nonlinear MPC discretized at 20Hz oscillates
before reaching the target state. On the other hand, the
proposed strategy performs similarly to the high frequency
nonlinear MPC (discretized at 100Hz with prediction horizon
N100Hz = 500), while being implemented with a 2Hz model
update rate, a prediction horizon N = 10 and solving convex
optimization problems. This example shows the advantage
of the proposed multi-rate architecture, where the high level
control action is updated at a lower frequency than the low
level input command, as shown in Figure 4.

Fig. 3. Closed-loop trajectories for the proposed strategy, linear and
nonlinear MPC policies. The evolution of the position px and velocity vx
underline that the proposed methodology steers the system to the goal state
without overshooting.

B. Constrained Example with High Frequency Update

In this example, we run the high level MPC planner at
10Hz, we set Xd = {x = [px, vx, θ, ω]> ∈ Rn : |θ| ≤
0.78} and the MPC horizon N = 10. We compare the
proposed strategy with linear MPCs and nonlinear MPCs
discretized at 10Hz, 20Hz and 100Hz. Also for linear and
nonlinear MPCs, we use the constraint tightening from (25).
Figure 5 shows that when the high frequency input from
the low level controller is not used, the closed-loop system

https://github.com/urosolia/MultiRate


Fig. 4. The total input applied to the system is given by the summation
of the high level control action from the MPC (in red) and the low level
CLF-CBF QP (in blue). We notice that the high level input is updated at
2Hz, whereas the low level input is updated at 1000Hz.

violates the state constraints. We underline that constraint
satisfaction for nonlinear MPC policies can be guaranteed
using the approaches from [8]–[12]. However, this example
shows the advantage of using the high frequency low level
controller to reduce the tracking error. Indeed, when the
low level controller is not used, the constraint tightening
from (25) is not sufficient to guarantee constraint satisfaction,
both when linear and nonlinear models are leveraged for
planning. Finally, we underline that the computational cost
associated with the proposed strategy is ∼ 0.1s. Whereas, the
computational cost associated with linear MPCs discretized
at 10Hz, 20Hz and 100Hz is ∼ 0.1s,∼ 0.25s and ∼ 1s,
respectively.

Fig. 5. Evolution of the rod angle θ for the proposed strategy, linear and
nonlinear model predictive controllers. When the low level controller is not
used the closed-loop system violates the state constraints.

VI. CONCLUSIONS

In this paper, we presented a multi-rate control architec-
ture, where the high level planner and the low level controller
run at different frequencies. First, we introduced sufficient
conditions which guarantee recursive constraint satisfaction

for the closed-loop system. Afterwards, we presented a
controller design which leverages control barrier functions
and MPC policies.
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