
Towards a Framework for Realizable Safety
Critical Control through Active Set Invariance

Thomas Gurriet1, Andrew Singletary2, Jacob Reher1, Laurent Ciarletta3, Eric Feron2, and Aaron Ames1

Abstract—This paper presents initial results towards a real-
izable framework for the safety critical controlled invariance of
cyber-physical systems. The main contribution of this paper is
the development of a control barrier function based methodol-
ogy which can be used to enforce set invariance on systems in
the presence of non-linear disturbances and uncertainty. The
first part of this work is a review of the current methods
available for finding viable sets and how they are linked
to practical choices regarding safety. Their limitations and
directions towards improvements when it comes to handling
model uncertainty are also highlighted. The second part of this
work is the formulation of a condition which can guarantee set
invariance in the presence of generic uncertain in the dynamics.
An associated optimization problem to enforce that condition
is proposed and a method to convexify the problem and make
it solvable in real-time is formally presented. The effectiveness
of the proposed framework is illustrated experimentally on a
two-wheeled inverted pendulum.

I. INTRODUCTION

The last couple of decades have seen the rapid emergence
of many enabling technologies in the field of robotics, thanks
to the increasing computational power density of processors,
the development of small and cost-effective sensors, and
advances in power electronics. As a result, extraordinary
robot behaviors are now common in the lab, but these have
yet to be translated to our everyday life. This is in no small
part due to a lack of the ability to guarantee the safety of these
systems. Safety is a widely used concept in every day life,
but one that can be difficult to translate rigorously. Safety
is centered around the idea of the constrained behavior of
a system. If a system behavior can be constrained, safety
in its most common meaning simply becomes a matter of
constraining it to a desired behavior deemed “safe”. We will
therefore adopt the notion of set invariance for dynamical
systems as the formal translation of the concept of safety.

In this paper, we will use the terminology of a “safety
set” of a system to denote the set of allowed states for
this system. The task of controlling the system in order
to guarantee the invariance of this safety set during all of
the evolution of the system will be the main focus of this
work. It is important to note that all guarantees provided
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Fig. 1: Experimental platform: a two-wheeled inverted
pendulum.

will be in terms of invariance of the safety set, which does
not necessarily guarantee the safety of the real system in
the practical and legal sense that is required for any real-life
application. The guarantees in terms of system safety will
always come, first and foremost, from a proper definition of
the system requirements and their proper translation into a
safety set, as well as from a proper implementation of the
required algorithms.

Generally, controlled invariance of an arbitrary safety set
cannot be guaranteed, especially when the control input is
constrained, as it is for any real system. Therefore, a subset
of the safe set must be found such that it can be rendered
invariant, therefore making the safety set invariant as well. If
it exists, such a subset is said to be viable [1]. The largest
of these subsets is known as the viability kernel. Knowing



the viability kernel would in theory allow for maximum
operational space while ensuring that the system remains in
its safety set for all times. However, the choice of a viable set
to render invariant has to be made in light of many practical
considerations as we will discuss, and the viability kernel
may not necessarily be the ideal choice of viable subset of
the safety set. The chosen viable subset of the safety set we
will be referred to as the “safety kernel” in this paper.

Finding these viability sets and kernels for different class
of systems has been the focus of multiple research over the
years [2]. There exist many different methods to find viable
sets for linear systems [3], [4], [5], but general methods
applicable to more realistic non-linear systems [6], [7], [8]
suffer from the usual curse of dimensionality. Exactly solving
this problem of viability is in general as hard as solving
HJB-like equations [8], hence making solving it online on
embedded hardware currently infeasible. Therefore, the usual
solution is to solve this global problem offline and extract
from it just the necessary information needed to then online
actively maintain the system in the safety set.

Several approaches to what we will call “active set invari-
ance” control approach (ASI for short) have been proposed
[9], [10], [11], [12] with varying degrees of success in
implementation. All these algorithms undoubtedly exhibited
safety enhancing behavior but they still did not provided strict
safety guarantees for the real system. All these algorithms are
based on rigorous proofs of set-invariance, but they currently
fail to address our inability to characterize the world with
arbitrary precision and accuracy. Including disturbances and
uncertainty in the mathematical framework of ASI is still
relatively new [13], [14] and will be one of the main focuses
of this paper. Our approach is in essence similar to [14] but
tries to overcome the limitations in the type of uncertainty
that can be addressed in [14] by proposing a method to
“convexify” the space of constraints making the problem
tractable.

This paper presents an generic approach to active set
invariance for dynamical systems in the presence of dis-
turbances and uncertainty. In Section 2, the choice of a
safety kernel to render invariant will be discussed in light of
practical and technical considerations. In Section 3, control
barrier functions [11] will be introduced and the subsequent
formulation of an optimization based input filter capable of
handling disturbances and uncertainty will be detailed and
formally justified via the main result of the paper. Finally,
section 4 will present the implementation of the framework
presented above to a two-wheeled inverted pendulum and
discuss some preliminary experimental results.

II. FINDING CONTROL INVARIANT SETS

A. Viability approach

In this paper, we will start by considering ideal continuous-
time control affine dynamical system of the form:

ẋ = f(x) + g(x)u, (1)

with f and g being locally Lipschitz continuous functions
defined on an open set O ⊆ Rn and u ∈ U a compact set of

Rm. Note that the variations of the input u must guarantee
the uniqueness of solutions to (1) for most of the discussed
concept to make sense. The Lipschitz continuity of the input
provides for example a sufficient condition in that regard.

As discussed in the introduction, we will tackle the issue
of safety from a set-invariance perspective. In practice, there
are several “passive” ways to make sure a system does
not exit its safety set, but for highly dynamic systems the
problem becomes more complex, especially if these systems
are unstable. The first question to naturally arise when faced
to this problem is : “Is it possible to control the system to
as to render the safety set invariant?”. Viability Theory [1]
focuses on addressing this question at an abstract level and
we will borrow some of the vocabulary and ideas introduced
by this theory.

Definition 1. For the dynamical system (1), a closed set
S ⊂ O is said to be a viable set if for all initial conditions
x(t0) ∈ S, there exist an input signal u(t) ∈ U such that
∀t ≥ t0, x(t) ∈ S.

As arbitrary safety sets are in general not viable, one must
first find a subset of the safety set that is viable to allow
for most active set invariance methods to work. We will call
these subsets of the safety set safety kernels.

Definition 2. For the dynamical system (1) and a closed
safety set S ⊂ O, a safety kernel S̃ is a viable subset of S.

The biggest viable subset of S is called the viability kernel
and can be considered as the “optimal safety kernel”, hence
making it one of the centers of attention of the viability
research effort. It has been shown that the viability kernel
can be expressed as a solution to an Hamilton-Jacobi partial
differential equation [8], which makes the search for this set
fundamentally hard.

Let’s briefly review the idea behind this approach. Con-
sidering the safety set S as the target set of a backwards
reachability problem, which can be described as the zero sub-
level set of g(x),

S = G0 = {x ∈ Rn | g(x) ≤ 0} (2)

The backwards reachable set can be calculated by solving for
the viscosity solution of a terminal value Hamilton-Jacobi-
Isaacs partial differential equation.

∂Φ

∂t
+ min

[
0, H(x,∇Φ(x, t))

]
= 0 (3)

where H(x,∇Φ(x, t)) is the Hamiltonian of the system. The
terminal condition for the problem is

Φ(x, 0) = g(x) (4)

Thus, the backwards reachable set for some finite time t =
τ < 0 is

G(τ) = {x ∈ Rn | Φ(x, τ) ≤ 0} (5)

By letting τ approach −∞, the backwards reachable set can
be computed for a near-infinite time horizon, which gives



an approximation of the viability kernel. A level set toolbox
for MATLAB® was designed for finding viscosity solutions
to Hamilton-Jacobi PDE’s hence allowing to approximate
viability kernels for generic non-linear systems [15]. The
main drawback of this method however is its exponential
scaling with the dimension of the system, due to the required
gridding of the state-space. More recent algorithms based
on parametric set representations, shown in [2], have been
developed to handle higher-dimensional systems but have yet
to be shown to work for non-linear systems.

B. Lyapunov approach

Even though the viability kernel is of fundamental interest,
it is not the only choice of safety kernel. Sometimes, we
don’t only want the system to stay within a given set, but we
also want to be able to reach a given safe state in case of
emergency. This is an issue that is critical in many practical
situations. UAV’s, for example, may need to stay within reach
of an unpopulated area at all time. Hence, there is another
set that is important to consider beside the safety set : the
“emergency set”. The emergency set represent a point or a set
in the state space that a controller must stabilize to in case of
emergency. Therefore the safety kernel in this context must
be a basin of attraction of the emergency controller that will
be used to stabilize the system to the emergency set.

Definition 3. Let Φ(t, x) be the solution to (1). A basin of
attraction B (or region of attraction) is the set

B ,

{
x ∈ Rn | Φ(t, x) is defined ∀t ≥ 0,

limt→∞Φ(t, x) = x∗

}
(6)

where x∗ is the equilibrium point of interest.

This idea is not new but to the extend of our knowledge,
all the methods implementing this idea [12], [9] switch to
the emergency controller when “getting close” to unreacha-
bility of the emergency set. This strategy is very punishing,
especially in the context of human operated systems. One
way to overcome these issues can be to choose as the safety
kernel a basin of attraction that is contained in the safety
set. Then, using the ASI filtering method discussed later, we
can guarantee the invariance of the safe set as well as the
reachability of the emergency set in a minimally invasive way,
while reserving the switching to the emergency controller to
actual emergency situations.

Finding basins of attraction is closely related to finding
Lyapunov functions, which is arguably an easier task than
finding viability kernels. While finding a Lyapunov function
for a system is nontrivial, a significant step forward has
been made with the development of sums of squares (SOS)
techniques, making it to some extent easier than finding a
viability kernel in terms of computational complexity. An
SOS optimization approach to finding polynomial Lyapunov
functions has become quite popular.

Let’s briefly review the ideas behind SOS optimization for
finding regions of attraction. Interested readers can find more
details in [16], [17], [18].

Definition 4. A polynomial p is a sum of squares (SOS) if
there exist polynomials {qi}Ni=1 such that p = ΣNi=1q

2
i

Using the Lyapunov asymptotic stability theorem, we can
characterize a region of attraction by:

B , {x ∈ Rn | V (x) ≤ γ, and ∇V (x) f (x) ≤ 0} (7)

with V (x) a positive definite function. Therefore, given poly-
nomial Lyapunov function and dynamics, one can formulate
an SOS program that checks if

∀x ∈ {x | V (x) ≤ γ} , ∇V (x) f (x) ≤ 0 (8)

for a given γ > 0. The positivstellensatz characterization
of polynomials (or S-procedure) tells us that if there exists a
polynomial s that is SOS such that

− (∇V (x) · f + s (γ − V (x))) is SOS,

then the contractiveness condition (8) is satisfied. Checking
that a polynomial is SOS being equivalent to solving an SDP
program, it is therefore a convex problem. MATLAB® tool-
boxes such as SOSTOOLS and SPOT exist for these methods,
which convert SOS or modified SOS constraints into an SDP
problem. However, SDP solvers are still relatively slow and
better-scaling method of checking SOS tbased on diagonally-
dominant sum of squares optimization are presented in [19].

Similarly to viability algorithms, it is interesting to try
and find the largest ROA possible. In that case, the problem
become non-linear, but iterative approaches exist to try and
overcome this increase in complexity by sequentially search-
ing for a Lyapunov function and a region of attraction [18].

C. Addressing model uncertainty

Until now, we have only ideal system like (1). In practice
however, uncertainty is a integral part of engineering and
controller design. Let us therefore expand the dynamics (1)
to include parameter uncertainty and disturbances:

ẋ = f(x, p, w) + g(x, p, w)u (9)

where f and g are locally Lipschitz continuous functions
with respect to x, continuous in w, and defined on a proper
open set O ⊂ Rn × Rnp × Rnw with u ∈ U ⊂ Rm
a compact set. Here, p corresponds the parameters of the
model assumed fixed in time, and the disturbance term w is
assumed to be locally Lipschitz continuous. Given (9), it is
in general impossible to render a set invariant for any values
of p and w. Bounds must therefore be chosen for these terms
in light of practical and operational consideration in order to
be able to construct an appropriate safety kernel and provide
guaranties of its invariance. It is important to realize that there
is a fundamental trade-off between the tolerated amount of
uncertainty and the performance of the system quantified by
the size of the safety kernel.

Let’s define the notion of “robust viability” in this partic-
ular context.



Definition 5. For the dynamical system 9, a closed set S ⊂ O
is said to be a robust viable set (or discriminating kernel)
if for all p ∈ P , w ∈W and x(t0) ∈ S, there exist an input
signal u(t) ∈ U such that ∀t ≥ t0, x(t) ∈ S.

Few of the methods discussed so far are readily able to
handle model uncertainty, which remains to be a signifi-
cant area of improvement. The reachability method in [8]
can handle the addition of a disturbance terms included in
the Hamiltonian, however handling parametric uncertainty
is much more challenging. An addition of a disturbance
term was implemented to a system in [18] for the sum
of squares optimization method, which required a sacrifice
to optimality and made the challenge of finding an initial,
feasible polynomial more difficult. Other approached like
[20] are this point but but have yet to be

One last point to consider when working with practical
cyber-physical systems is the model of time used. Until
now we had considered that everything works in continuous-
time, but in actuality, the sensing data and controller work
in discrete time. Treating the system as a sampled data
system, as defined in [2], involves treating the plant dynamics
as continuous and the controller as discrete. Lyapunov-like
sufficient conditions to ensure stability for sampled-data
systems are introduced in [21], and attempting to apply them
to the optimization methods mentioned previously is a current
area of research for the team. When it comes to viability set
search algorithms, to the best of our knowledge only linear
dynamics can currently be handled [10] in the context of
sampled data systems.

III. ASI FILTERING STRUCTURE

In the previous section, we have reviewed the different
methods available to find safety kernel that guarantee the
feasibility of the active set invariance task. What we discuss
in this section is a general approach to impose this set
invariance in a modular and minimally intrusive way. This
proposed approach inserts a filter between the controller and
the system. This way, the ASIF (active set invariance filter)
actively filters the inputs sent by the controller (cf. figure 2)
to ensure that they do not make the system leave the chosen
safety kernel S̃.

Fig. 2: ASI control structure

In general, there exists for most states in S̃ a range of
allowable inputs that one must select from. That choice
should not impact the enforced set invariance property of the
ASIF. This is why an ASIF based on constrained optimization
is a natural choice for this task. Note, however, that without
more information than the output of the controller, only
“blind” point-wise optimality can be achieved. An ASIF
structure where the cost function is provided by the controller
along with the desired input is an interesting solution to that
problem and will be the subject of future research.

A. Barrier functions

Let us now shift the attention to a control law that can guar-
antee the forward invariance of the safety kernel S̃ (which
has been constructed as viable subset of S). The core concept
behind the proposed ASIF comes from Nagumo’s theorem
[22]. Nagumo’s theorem states that the forward invariance of
S̃ is equivalent to the “sub-tangentiality condition” (10):

f(x) + g(x)u (x, t) ∈ T (x), (10)

for all x ∈ S̃ and t ≥ t0, where T (x) is the tangent
cone [1], [22] to S̃ at x. Note that the variations of the
input u(x, t) must guarantee uniqueness of solutions to (1)
for this statement to hold. The challenge now is to find a
representation of S̃ for which the expression of T (x) is
tractable. The approach proposed by [11] represents S̃ as the
zero superlevel set of a continuously differentiable function
h : Rn → R. However, such functions can only describe
smooth sets. In this section, we will extend this representation
to a particular class of non-smooth sets called "practical sets"
[22]. To describe such sets, one only needs to consider r
continuously differentiable functions hi : Rn → R such that:

S̃ = {x ∈ Rn | hi (x) ≥ 0, i ∈ J1, rK}
∂S̃ = {x ∈ Rn | hi (x) = 0, i ∈ J1, rK} .

(11)

where J1, rK = {1...r} ⊂ N. For such a set, the tangent cone
to S̃ at x can be expressed very simply by1:

T (x) = {z ∈ Rn | ∀i ∈ Act(x), ∇hi(x).z ≥ 0} , (12)

where:
Act(x) , {i ∈ J1, rK | hi(x) = 0} . (13)

The sub-tangentiality condition (10) can therefore be ele-
gantly written as:

Lfhi(x) + Lghi(x)u (x, t) ≥ 0, (14)

for all x ∈ ∂S̃, t ≥ t0, and i ∈ Act(x). This formulation,
however, is not very practical as it only constraints the input
when the system is on the boundary of the safety kernel,
which is impossible to determine with absolute accuracy
in practice. The idea proposed in [11] is to introduce a
“strengthening term” in (14) and to impose this new “barrier
condition” for all states in S̃:

Lfhi(x) + Lghi(x)u(x, t) + α(hi(x)) ≥ 0, (15)

for all x ∈ S̃, t ≥ t0 and i ∈ J1, rK, with α : R → R an
extended class K function as defined in [11]. This barrier con-
dition and the uniqueness of solutions to (1) being satisfied
on S̃ implies by definition of α that the “sub-tangentiality
condition” (10) is also satisfied, hence guaranteeing its for-
ward invariance as proven in [11].

Because S̃ is viable by construction, the existence of an
input u (x, t) satisfying (15) is guaranteed for all x ∈ ∂S̃. It
is easy to show that given a viable set the feasibility of this
barrier condition can be guaranteed on all of S̃ with a proper
choice of strengthening function α.

1If Act(x) = ∅, T (x) = Rn



Proposition 6. Consider the dynamical system (1) and set
S̃ characterized by (11) with a continuously differentiable
functions hi, i ∈ J1, rK. If S̃ is viable, and for all i ∈ J1, rK,
Lfhi(x) and Lghi(x) are bounded on S̃, then there exists
an extended class K function α̃ : R −→ R such that for all
x ∈ S̃ there exists an input u ∈ U for which condition (15)
is satisfied.

Proof: Consider the set

A (r) ,
{
x ∈ S̃ | ∃i ∈ J1, rK, 0 ≤ hi (x) ≤ r

}
⊆ S̃,

and let’s define function α : R −→ R as:

α (r) , − min
x∈A(r)
u∈U

(
min
i∈J1,rK

(Lfhi(x) + Lghi(x)u)

)
.

Because U is compact, Lfhi(x) and Lghi(x) are bounded
on S̃ and Lfhi(x) +Lghi(x)u is continuous with respect to
both x and u, α is a well defined non-decreasing function on
R for which for all x ∈ S̃ and i ∈ J1, rK there exist u∗ (x)
such that −α (h (x)) ≤ Lfhi(x) + Lghi(x)u∗ (x). Because
S̃ is viable, then for all x ∈ ∂S̃ there exist an input u∗∗ ∈ U
such that Lfhi(x) + Lghi(x)u∗∗ ≥ 0, for all i ∈ Act(x).
Let’s notice that A (0) = ∂S̃, and hence that α (0) ≤ 0.
Because it is always possible to find an extended class K
function α̃ such that for all λ ∈ R, α̃ (λ) ≥ α (λ), then
for all x ∈ S̃ and i ∈ J1, rK there exist u∗ (x) such that
−α̃ (hi (x)) ≤ Lfhi(x) + Lghi(x)u∗ (x).

Remark 7. Note that the choice of functions α and hi is
arbitrary. It would be interesting to investigate whether or
not it is possible to guarantee the forward invariance of a
sampled-data system [3], [23] with a proper choice of α and
hi while imposing (15) only at the sampled points.

The question now is how to actually impose the set-
invariance condition derived above. In this same paper [11],
the authors use quadratic programming as a tool to unify
Control-Lyapunov and Control Barrier Functions in one safe
and performant controller. What will interest us in that
approach is its flexibility as it can actually be used in
conjunction with any controller similarly to the structure
presented in figure 2. Imposing the barrier condition (15) is
very natural in this optimization problem where minimizing
the normed difference between the desired and actual inputs
provide the best level of fidelity to the controller commands
while guaranteeing invariance of the safety set. The QP based
ASIF is given by:

Ideal-QP

u∗act(x, t) = argmin
uact∈U

(udes(t)− uact)
2

s.t. BCi (x, uact) ≥ 0, ∀i ∈ J1, rK
(16)

where:

BCi (x, u) , Lfhi(x) + Lghi(x)u+ α(hi(x)).

Note that when r > 1 or U is a polytope, deriving an
analytical solution is possible but tedious as the number of
conditions increase exponentially as 2r+2m when U is an
hyper-cube of Rm. Nevertheless, it can still be computation-
ally interesting for small values of r, especially if parallel
computing capabilities are available.

Furthermore, the Lipschitz continuity of such controllers
has been studied in [24], but the necessary conditions pro-
posed are too restrictive for a generic safety kernel and
allowable input set. This issue is however non-existant in
the case of sampled-data systems which are actually a more
accurate representation of reality than purely continuous
systems.

B. Robust ASIF formulation

Up to this point, only the safety of the ideal system (1) is
guaranteed (under the assumption of continuous feedback of
course). It is however very hard if not impossible to derive
a model that describes with absolute exactness the behavior
of a complex physical system. Therefore, it is fundamental
to address the effects of disturbances and model uncertainty
in our ASI framework. The first step in that process has
already been discussed in the previous section as having a
safety kernel that is robust is mandatory to guaranteeing the
feasibility of the optimization problem solved by the ASIF.
The second step is to provide a new set-invariance condition
that will ensure forward invariance of the safety kernel even if
the dynamics are not known exactly. Let’s define the “robust
barrier condition”:

RBCi (x, p, w, u) ≥ 0, (17)

where :

RBCi (x, p, w, u) ,

Lfhi(x, p, w) + Lghi(x, p, w)u+ α(hi(x)).

Then, if (17) is satisfied for all x ∈ S̃, p ∈ P , w ∈ W , and
i ∈ J1, rK, it is satisfied in particular for the actual values of
the parameters and disturbances. Provided that S̃ is a robust
viable set, then (6) can be extended to provide a choice of α
guaranteeing the non-emptiness of the set of inputs satisfying
(17) in S̃ . Therefore, a guaranteed feasible robust ASIF can
be formulated as:

Robust-QP
u∗act(x, t) = argmin

uact∈U
(udes(t)− uact)

2

s.t. RBCi (x, p, w, ε, uact) ≥ 0,
∀p ∈ P, ∀w ∈W, ∀i ∈ J1, rK

(18)

This optimization problem now belong to the class of
robust optimization problems[25], [26]. In general, the de-
pendency in the uncertainty terms is not linear making the
problem hard to solve. However, it is relatively easy to find
polytopic over-approximations of the safety constraint set as
we will discuss later. If one is able to provide such an over-
approximation, then the difficult optimization problem (18)



can be replaced by a less optimal quadratic program but one
that still guarantees set invariance. First let us prove a simple
lemma.

Lemma 8. Let f : Rm −→ R and g : Rn −→ Rm be any
two continuous functions. Let A ∈ Rn be a compact set. Let’s
define:

B , {g (x) ∈ Rm | x ∈ A}
C , {f (y) ∈ R | y ∈ B′ ⊇ B}
D , {f ◦ g (x) ∈ R | x ∈ A} ,

where B′ is compact, then:[
max
y∈B′

(f (y))

]
≤ 0 =⇒

[
max
x∈A

(f ◦ g (x))

]
≤ 0. (19)

Proof: First let’s note the problem is well posed since
by continuity of f and g, B, C and D are compact.
Hence, Weierstrass’ theorem guarantees the existence of the
maximums in (19). We also have:

max
x∈A

(f ◦ g (x)) = max
z∈D

(z)

max
y∈B′

(f (y)) = max
z∈C

(z) .
(20)

Let x ∈ A, then f ◦ g (x) ∈ D. But g (x) ∈ B ⊆ B′, hence
f (g (x)) ∈ C. So D ⊆ C. Which means that:[

max
z∈D

(z)

]
≤
[
max
z∈C

(z)

]
,

hence (19).
Let’s now prove the main theorem of this paper.

Theorem 9. Consider the dynamical system (9) and a
practical robust viable set S̃ characterized by continuously
differentiable functions hi, i ∈ J1, rK. Then it is possible
to reformulate (18) as a quadratic program that guarantees
forward invariance of S̃.

Proof: Let’s start by rewriting the constraint set of (18)
as an accessory optimization problem. Given x ∈ S̃ and
uact ∈ U , for all p ∈ P , w ∈W , ε ∈ Υ, and i ∈ J1, rK, then:

RBCi (x, p, w, uact) ≥ 0, (21)

if and only if the optimal value of the accessory optimization
problem:

max
p∈P
w∈W

(
ai (x, p, w)

>
uact + bi (x, p, w)

)
,

is negative for all i ∈ J1, rK with:

ai (x, p, w) , −Lghi(x, p, w)

bi (x, p, w) , −Lfhi(x, p, w)− α(hi(x, p, w)).

The core idea of this proof is to now transform this non-linear
accessory optimization problem into a linear program with a

lower objective value. Given x ∈ S̃ and uact ∈ U , then from
Lemma 8 we have:[

max
p∈P, w∈W

(
m∑
j=1

(ai,j (x, p, w)uact,j) + bi (x, p, w)

)]
≤ 0

⇑
max
ãi,j , b̃i

(
m∑
j=1

(ãi,juact,j) + b̃i

)
s.t. ãi,j ∈ {ai,j (x, p, w) | p ∈ P, w ∈W}

b̃i ∈ {bi (x, p, w) | p ∈ P, w ∈W}

 ≤ 0,

for all i ∈ J1, rK, which can be rewritten in a more compact
form as:

c∗ (x) = max
ãi

(
ãi
>ũ
)

s.t. Di (x) ãi ≤ di (x)
, (22)

for all i ∈ J1, rK, where ãi , [[ãi,1, ..., ãi,m] |bi]> and ũ ,
[uact|1]

>. Here we have, in the context of Lemma 8, chosen
the set B′ as the smallest hyper-box containing B but the
result still holds for any polyhedral enclosure of B. Hence,
di (x) and Di (x) encode the bounds on ãi,j and b̃i and we
leave it to the reader to derive the exact content of di (x) and
Di (x).

Because (22) is a linear program (guaranteed feasible by
a proper choice of S̃), we can use strong duality to see that
(22) is equivalent to:

c∗ (x) = min
λ̃i

(
λ̃i
>
di (x)

)
s.t. λ̃i

>
Di (x) = ũ

λ̃i ≥ 0

, (23)

for all i ∈ J1, rK. So given x ∈ S̃ and uact ∈ U such
that the optimal value of (23) is negative, condition (21) is
also satisfied hence guaranteeing set invariance of S̃, and the
resulting robust optimization problem is indeed a quadratic
program since:(

min
uact∈U

(udes(t)− uact)
2

s.t. c∗ (x) ≤ 0

)
=


min

uact∈U, λ̃i

(udes(t)− uact)
2

s.t. λ̃i
>
di (x) ≤ 0

λ̃i
>
Di (x) = ũ

λ̃i ≥ 0.

 (24)

Remark 10. We end up with a robust ASIF formulation
(24) which is computationally tractable and still guarantees
forward invariance of S̃. However, this simplification of the
constraint space comes at the expense of added conservatism
on the allowable input space. It would therefore be interesting
to quantify the induced shrinking of the allowed input space.

The proposed formulation (24) is actually fairly generic.
Even systems that are not affine in input can be handled at the



expense of a loss in performance, as the allowed input space
shrinks because of the conservatism added to the accessory
optimization problem. It would be interesting to see how this
framework adapts to set representations coming from the field
of computer vision as brushed over in [27]. Some of our
future work will focus on utilizing this framework to allow
autonomous vehicles to explore unknown and potentially
dynamic environments safely.

IV. PRACTICAL IMPLEMENTATION ON A TWO-WHEELED
INVERTED PENDULUM

A. The experimental platform

The system we chose to test our framework is a com-
mercial two-wheeled inverted pendulum (cf. figure 1). To fit
our experimental needs, all the electronics has been replaced
and only the main frame, the motors and the battery remain
unchanged. The power drive is entirely contained in the
RoboteQ FBL-2360 motor controller. The motor controller
also provides motor speed feedback and low-level informa-
tion on the power train. A low-level safety board has also
been designed specifically for this systems in order to allow
for the vehicle to be remotely shut down in case emergency,
even in case of a lockup of the rest of the system.

Fig. 3: Schematic of the system

The information processing and control is handled by
three separate embedded computers (cf. figure 3). Two are
regrouped on an UDOO-quad, an i.MX6 quad-core ARM

processor running Ubuntu 14.04 and an Arduino Due. The
Arduino Due runs all the low level system management,
allowing for good real-time capabilities whereas the Linux
side of the UDOO takes care of logging data and relaying
communication between the Arduino and our ground station
control via WiFi. This communication is based on a ROS
network running on the Linux side of the UDOO. A GUI
designed using the MATLAB® AppDesigner environment
allows us to display the system states in real-time, send
commands and log the data sent back by the on-board
systems (cf. figure 4).

Fig. 4: GUI developped for the system

A BeagleBone Black running a Xenomai kernel is also
connected to the system allowing us to run computationally
intensive algorithms with real-time requirements. Finally, a
Yost Labs’ 3-Space IMU provides attitude information at
250Hz.

B. ASIF implementation

The system model was derived using a first order model
of the motors, and assuming no sliding between the wheels
and the ground and no friction in the joints. Only the 2
dimensional behavior of the system (no turning) is considered
in this example. The equations of motion for the system, with
parameter values entered, are shown below with v being the
speed of the segway, φ the tilt angle, and u de commanded
voltage to the motors:

d
dt

 v
φ

φ̇

 =


cos(φ)(−1.8u+11.5v+9.8 sin(φ))−10.9u+68.4v−1.2φ̇2 sin(φ)

cos(φ)−24.7
ψ̇

(9.3u−58.8v) cos(φ)+38.6u−243.5v−sin(φ)(208.3+φ̇2 cos(φ))
cos2(φ)−24.7


For demonstration purposes, the vehicle is controlled by a

simple, hand tuned PD controller, that tracks desired velocity.
The input bounds are u ∈ [−15, 15]V. The controller does a
good job at stabilizing the system up-right, though it is easy
to make the robot fall down with overly ambitious commands.
For testing our ASIF, the desired safe set was a pitch angle
φ ∈

[
− π

12 ,
π
12

]
rad, v ∈ [−5, 5] m/s, and φ̇ ∈ [−2π, 2π] rad/s.



Using this state-space constraints and the dynamics of
the system, the non-robust viability kernel was approxi-
mated using the Hamilton-Jacobi method described above
(cf. figure 5). First, the reachability analysis was performed
on a 75x75x75 grid of the state space, with the edges of
the grid at the state constraints of the system. After this
result converged, polynomial regression was used to create
an analytical representation of the set that can be used in the
ASIF. While the parametric uncertainty was not included in
the viability kernel approximation, the input was constrained
to 30% of its actual bounds, which was found experimentally
to be sufficient for the ASIF to always be feasible.

The QP solver used for the experiment was qpOASES [28],
[29], as it is very efficient for solving sequential problems
such as this one. In the implementation of the ASIF, it
took the BeagleBone Black 0.4 ms on average to solve the
robust QP of five decision variables and 4 constraints. It also
takes 0.8 ms to transmit the data back and forth between
the BeagleBone and Arduino Due. To make the the safety
constraint space convex, as discussed in Theorem (9), the
interval arithmetic library [30] was used. Of the 0.4 ms solve
time, less that 0.1 ms is used to do the interval arithmetic
computations.

Fig. 5: Safety kernel of the system for φ ∈
[
− π

12 ,
π
12

]
C. The experiments

First, the vehicle is given a desired pseudo-sinusoidal
input, which cause the pitch angle of the vehicle, φ, to exceed
the imposed π

12 angle constraint when the ASIF is not active.
Two runs were performed, one without the ASIF engaged,
and one with. The results are shown in figure 6. It is clear
that the input is being regulated in a manner that prevents
the safety condition from being breached, but in a way that
minimally alters the overall trajectory.

However, this only works because the system is known
with sufficient accuracy. If mass is added on the system, the
ideal ASIF becomes unable to maintain the vehicle pitch in
the desired safety set. Figure 7 illustrates with fact when
the controller is turned off and only the ASIF is active. To
address this modeling uncertainty, we implemented the robust
formulation derived in the previous section, and as expected

Fig. 6: LQR w/ and w/o ASIF

the pitch angle remains between the prescribed bound with
various values of disturbance load (cf. figure 7).

Fig. 7: Standard ASIF tuned for m = 2.5kg and Robust
ASIF tuned for m ∈ [2.5, 9.5] kg, with varying loads.

In this last experiment, the controller is turned of and the
system is left to lilt over, until the ASIF kicks in and prevent
it from going past the chosen angle limit.

D. Robustness to external disturbances

Furthermore, tests have been conducted for the non-robust
ASIF when the system is perturbed by an impulse force. The
PD controller is activated and a zero-velocity command is
sent so as to keep the system up-right and immobile (cf.
figure 8). This type of distrubanced essentially corresponds
to an instantanuous change of the system state. As long as
the system is inside the safety kernel when the disturbance
vanishes, the non-ASIF is sufficient to ensure set-invariance.
So as expected, if the ASIF isn’t present, the PD controller
reacts very violently to this perturbation which triggers a



failsafe when the vehicle tilt goes π
4 . When is ASIF is active

however, the system is kept within the safety set and the
disturbance is essentially damped out in a minimally invasive
way. A video of this experiment is provided in [31].

Fig. 8: ASIF with an impulse disturbance.

V. CONCLUSIONS AND FUTURE WORK

In this work, we began to provide a framework for ensuring
the safety of realistic cyber-physical systems, which are prone
to disturbances and parametric uncertainty. The methods that
currently exist for approximating viable sets and basins of
attractions, while not refined for such systems, have been out-
lined and implemented. An active set invariance filter based
on control barrier functions was created and successfully im-
plemented on a two-wheeled inverted pendulum. This ASIF
was shown to prevent the robot from leaving its defined safe
set. Future work involves applying this framework to higher-
dimensional systems, as well as streamlining the process of
accounting for parametric uncertainty and disturbance terms.
An alternative approach based on online optimization is also
being examined, which would allow working with higher-
dimensional systems without the need to globally solve for
the safety kernel beforehand.
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