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Abstract— Future manufacturing environments will see an
increased need for cooperation between humans and machines.
In this paper we propose a method that allows industrial
manipulators to safely operate around humans. This approach
guarantees that the manipulator will never collide with human
operators while performing its normal tasks. This is done in an
near-optimal way by considering how forward reachable sets of
human operators grow with time, and by continuously updating
these reachable sets based on current position estimates of the
operators near the robot. An implicit active set invariance filter
is then used to constrain the system—in a minimally invasive
way—to stay in the complement of that forward reachable set.
We demonstrate this approach in simulation on an industrial
robotic arm: the ABB IRB 6640.

I. INTRODUCTION

The global industrial robot market has more than doubled
in the past five years, and the International Federation of
Robotics expects almost two million new robot installations
in factories by 2020 [1]. However, concern for the safety
of their human counterparts grows along with the density
of robots in factories. As a result, in heavy manufacturing
machines and humans are mostly separated. This makes the
process rigid: it becomes spatially constrained and manual
intervention in the vicinity of a robot may require halting
the process altogether. To reduce downtime and allow for
more human-robot interaction, large strides must be made in
ensuring the safety of these robots in dynamic environments.

Safety in control can be generalized to the concept of
constraining a system to a set of safe states. Thus, if the
system remains in that safe set for all time, it is considered
safe. More formally, a system is considered safe if its defined
safe set is forward invariant. The most straightforward way
to prove forward invariance is through reachability analy-
sis, but for high-dimensional systems current methods are
either intractable, or overly conservative, even for closed-
loop systems [2]. Barrier certificates offered an alternative
to expensive reachability calculations for invariant set veri-
fication of closed-loop dynamical systems [3]. These barrier
certificates were then extended to control systems in the form
of control barrier functions [4], which provide a tractable
approach for ensuring forward invariance of a system under
any control law, in the absence of input constraints. For more
results on control barrier functions, see [5] for information
on robustness and [6] [7] for applications. However, barrier
functions are still challenging to find in the presence of input
constraints. To ensure feasibility of the optimization problem,
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one must ensure that the set described by the barrier function
is viable, [8]. This has been done on robotic systems, [9];
however, finding these viable sets is often intractable for high
dimensional systems [10], or overly conservative [11]. The
issue of finding viable sets is particularly apparent in the
context of time-varying barrier functions. While there are
results on time-varying barrier functions [12], they don’t take
the case of bounded inputs into account. Importantly, current
methods would require recomputation of viable sets in real-
time, which is infeasible even for the conservative methods.

A recent approach was introduced for implementing bar-
rier functions on input-constrained systems without the need
for explicit computation of viable sets [13]. This approach,
which will be explored further in this paper, is unique in that
it allows us to guarantee safety in complex systems for which
finding viable sets is not realistic. In this paper, we will show
that this approach is suitable for high-dimensional, complex
systems, whose dynamics may not have simple, closed-form
expressions, and furthermore, that it readily allows for time-
varying safe sets. We also provide an important proof for the
that reinforces the validity of this method in practice.

In particular, we demonstrate the method on a robotic
manipulator in a factory environment with human workers.
This type of system is of particular interest as it has several
characteristics that make it difficult for these types of safety
guarantees: high dimensionality, complex dynamics, and a
dynamic environment. The constraint of avoiding humans
is particularly difficult, as the safety constraint is time-
varying and in Cartesian space, while the dynamics evolve
in the joint space. However, recent advances in rigid-body
dynamics algorithms [14] allow for rapid computation of
the dynamics and control inputs and their derivatives for
such systems. By utilizing these algorithms, we are able to
guarantee safety for robotic manipulators in real-time, with
no prior computations.

The most noteable alternative to our approach is the poten-
tial field approach [15]. However, it has certain limitations:
in cluttered environments the method can be conservative by
rendering some collision-free paths infeasible, and there are
limitations in terms of the complexity of the nominal tasks.

The outline of the paper is as follows: Section II details the
preliminary mathematics and notation used moving forward
and Section III introduces the theory of safety for control
systems. Section IV then details the online safety approach
used to enforce set invariance under any control law. Section
V introduces the robotic arm and setup that will be used
to demonstrate the method, while Section VI showcases the
results from simulation. Lastly, Section VII concludes the
results and discusses future work.

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019

978-1-7281-4004-9/19/$31.00 ©2019 IEEE 173



II. PRELIMINARIES

In this paper, we consider continuous-time affine control
systems of the form:

dx

dt
= f(x) + g(x)u, (1)

with f and g continuous functions defined on Rn, and with
u ∈ U a compact subset of Rm. Existence and uniqueness of
solutions to (1) is required for most of the discussed results
to hold. For example, Lipschitz continuity of f , g and u
provides a sufficient condition in that regard.

For a feedback controller u(x) the flow operator φut (x0)
is defined as the solution of the initial value problem

dx

dt
= f(x) + g(x)u(x),

x(0) = x0.
(2)

The flow satisfies the semi-group property

φut+s(x0) = φut ◦ φus (x0). (3)

Furthermore, when f + gu is smooth, the sensitivity of the
flow operator with respect to the initial time and state satisfies

Dφut (x0) = Q(t), (4)

where Q(t) is a solution to the initial value problem [16]

dQ

dt
= D [(f + gu) ◦ φut (x)]Q(t),

Q(0) = I.
(5)

III. SAFETY, INVARIANCE, AND BARRIERS

We utilize a notion of safety that is formalized as invari-
ance of a set S ⊂ Rn.

Definition 1: A set S is forward invariant for system (1)
if x (0) ∈ S implies that x(t) ∈ S for all x ≥ 0.
The main tool at our disposal for set invariance is Nagumo’s
theorem [17] that states that the forward invariance of S for
system (1) is equivalent to the sub-tangentiality condition:

f(x) + g(x)u (x) ∈ TS(x), (6)

being satisfied for all x ∈ S, where TS(x) is the contingent
cone to S at x [8], [17].

In the following we restrict attention to practical sets [17]
that are defined as the zero super level set of a collection of
r continuously differentiable functions hj : Rn → R:

S =

x ∈ Rn |
r∧
j=1

(hj(x) ≥ 0)

 . (7)

For such sets, the contingent cone can be expressed as

TS(x) =

v ∈ Rn |
∧

j∈Act(x)

〈∇xhj(x), v〉 ≥ 0

 ,

Act(x) , {j ∈ {1, . . . , r} | hj(x) = 0} .

(8)

In that case, the sub-tangentiality condition (6) can be written
as

TCj (x, u) , Lfhj(x) + Lghj(x)u ≥ 0, (9)

for all x ∈ ∂S, and j ∈ Act(x), where Lfh and Lgh
denote the Lie derivatives of h along f and g, respectively.
Therefore, condition (9) defines for any x ∈ S a set US (x)
of admissible inputs that guarantee forward invariance of S:

US(x) ,


r⋂
j=1

{u ∈ Rm : TCj (x, u) ≥ 0}, if x ∈ ∂S,

Rm, otherwise.
(10)

The sub-tangentiality condition is however not very desirable
to enforce in practice as it only restricts the set of admissible
inputs when the system is on the boundary of the safety set,
which is a measure zero surface in the state space. The idea
introduced in [4] is to consider a strengthening term in (9)
and to impose this new barrier condition:

BCj (x, u) , Lfhj(x) + Lghj(x)u ≥ −αj (hj(x)) , (11)

for all x ∈ S, j ∈ {1, . . . , r} and with the strengthening
extended class K functions αj : R → R. This barrier
condition defines a set ŨS (x) of admissible inputs:

ŨS (x) , {u ∈ Rm | ∀j ∈ {1, . . . , r} , BCj (x, u) ≥ 0}
(12)

and because for all x ∈ S, ŨS (x) ⊆ US (x), this new
condition also implies forward invariance of S.

This is however only half of the story as nothing guar-
antees that ŨS (x) ∩ U is non empty for all x ∈ S. This
is because for a given control system, arbitrary sets cannot
a priori be rendered forward invariant. A set that can be
rendered forward invariant is commonly referred to as viable
set [8].

Definition 2: A closed set S is viable for system (1) if
for all x (0) ∈ S, there exists a control law u : Rn → U
such that ∀t ≥ 0, x (t) ∈ S under that policy.
Equivalently, a viable set can be defined as a set with the
property that US(x) 6= ∅ for all (t, x) inside the set. Note
that in most cases ŨS (t, x) ( US (t, x), so finding a viable
set is not sufficient to ensure that ŨS (t, x)∩U is always non-
empty. One has to be careful and choose the strengthening
functions αj such that for all x ∈ S, ŨS (t, x) ∩ U 6= ∅.

IV. ONLINE ACTIVE SAFETY

Ideally, one would want to find the largest viable subset
of S—the viability kernel—to maximize the operational free-
dom of the system. This is however notoriously hard—just
as hard as finding an optimal control law. But as in optimal
control, there is a dual approach: continuously solving for
the optimal control action at the current state. Unfortunately,
solving viability this way requires finding a trajectory over
an infinite time horizon, which is not possible in practice. In
this section we show how a viable subset can be implicitly
characterized via a small viable backup set S0 ⊂ S (which
is easy to compute) and a backup controller that renders S0

invariant.
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Fig. 1. Illustration of the Backup Set and Invariant Set.

A. Safety via Backup Reachability

Consider a backup set SB = {x | hB(x) ≥ 0} ⊂ S and a
backup controller uB : Rn → U with the property that for
all x ∈ ∂SB ,

Lfh
B(x) + Lgh

B(x)uB(x) ≥ 0, (13)

which implies that the set SB is invariant under the closed-
loop dynamics resulting from uB . For an appropriately
designed uB and a time horizon T a larger implicit invariant
set SI is defined as the domain of attraction within time T of
SB under the closed-loop dynamics. This set SI is defined
as follows:

SI =

x | ∧
τ∈[0,T ]

(
φu

B

τ (x) ∈ S
)
∧
(
φu

B

T (x) ∈ SB
) .

(14)
That is, the implicit set SI consists of all initial conditions
that are steered to SB within time T without exiting S along
the way.

Theorem 1: If (13) holds (i.e., SB is invariant under uB),
then SI is a viable set contained in S.

Proof: Consider x ∈ SI , then φu
B

τ (x) ∈ S for all
τ ∈ [0, T ]. Containment of SI in S follows from the special
case τ = 0. From the semi-group property of the flow and
invariance of SB under uB it follows that for any τ, s > 0

x ∈ SI =⇒ φu
B

s ◦ φu
B

τ (x) ∈ S ∧ φu
B

T ◦ φu
B

τ (x) ∈ SB

=⇒ φu
B

τ (x) ∈ SI ,

which implies that also SI is invariant under uB . Hence SI

is viable.
Figure 1 illustrates the implicit viable set for a double

integrator under an optimal backup controller with walls at
x = ±5.

B. Implicit Level Set Functions

With a properly defined uB the implicit set SI can be
significantly larger than SB , and thus be less conservative.

However, enforcement of the barrier condition (11) requires
knowledge of a collection of level set functions hIj that
together define SI , as well as their derivatives. In the
following we construct such functions and then discuss how
they can be computed on-the-fly via numerical integration.

Two types of constraints are required to define SI : one
for ensuring that SB is reached within time T , and a family
of constraints that ensure that S is kept invariant along the
trajectory. Such constraints can be defined in terms of the
functions hB and hj that define the sets SB and S, and the
flow of the backup controller:

hIT (x) = hB ◦ φu
B

T (x), (15a)

hIj,τ (x) = hj ◦ φu
B

τ (x). (15b)

Equation (15b) represents an infinite collection of functions,
which poses an issue that we will address later. The validity
of the following proposition is clear from the definition of
SB .

Proposition 1: SI is the super 0 level set of the functions
defined in (15), i.e.

SI =

x : hIT (x) ≥ 0 ∧
∧

τ∈[0,T ]

r∧
j=1

(
hIj,τ (x) ≥ 0

) . (16)

Thus, we can enforce invariance of SI either via the tra-
ditional condition (9) or the strengthened barrier condition
(11). However, both of these conditions require knowledge
of the gradient of the barrier functions (15). From the chain
rule of differentiation the gradients can be written as follows:

∇hIT (x) = D
[
hB
]
φu
B
T (x)

D
[
φu

B

T

]
x

(
f(x) + g(x)ub(x)

)
,

(17a)

∇hIj,τ (x) = D [hj ]φuBτ (x)D
[
φu

B

τ

]
x

(
f(x) + g(x)ub(x)

)
.

(17b)

These expressions can both be evaluated if the flow φu
B

τ (x)

and the flow sensitivity D[φu
B

τ ]x are known, which can be
found via numerical integration of the closed-loop dynamics
under the backup controller.

C. Online Safety Filter

We now turn to the issue of having an infinite number of
functions defining the set. In practice we can only enforce
positivity of a finite number of the functions in (15) defining
SI , and therefore propose a safety filter that enforces posi-
tivity of a subset of ε-tightened constraints evenly spaced in
time:

Lfh
I
T (x) + Lgh

I
T (x)u ≥ −αT (hIT (x)), (18a)

Lfh
I
j,kη(x) + Lgh

I
j,kη(x)u ≥ −αk(hIj,kη(x)− ε), (18b)

for k = 0, 1, . . . , T/η.
Although this just enforces positivity of a finite number

of the functions hIj,τ , under some regularity conditions and
appropriate margin ε we expect that this should be sufficient
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to guarantee positivity of the whole family of functions. We
make this more precise below via the following lemma.

Lemma 1: Let Lh be the Lipschitz constant of h with
respect to the Euclidean norm and let

Lφ = sup
x∈S
‖f(x) + g(x)uB(x)‖2 (19)

be the maximal velocity of the closed-loop vector field. Then∣∣∣h ◦ φuBt (x)− h ◦ φu
B

s (x)
∣∣∣ ≤ LhLφ|t− s| (20)

Proof: Assume WLOG that t ≥ s and let y = φu
B

s (x)∣∣∣h ◦ φuBt (x)− h ◦ φu
B

s (x)
∣∣∣ ≤ Lh ∥∥∥φuBt (x)− φu

B

s (x)
∥∥∥
2

= Lh

∥∥∥φuBt−s(y)− y∥∥∥
2
≤ LhLφ|t− s|,

since Lφ is the maximal velocity of the vector field.
It follows that enforcing invariance of S via a finite subset

of constraints as in
Theorem 2: For ε ≥ LhLφ

η
2 the safety filter in (18)

enforces invariance of SI .
Proof: The filter implies that hIj,τ (x) = hj◦φu

B

τ (x) ≥ ε
for all τ = kη, so by Lemma 1 we can for each τ find a k∗

such that, ∣∣hIj,τ (x)− hIj,k∗η(x)∣∣ ≤ LhLφ η2 , (21)

meaning that

hIj,τ (x) ≥ ε− LhLφ
η

2
≥ 0. (22)

Thus all the functions defining SI are positive, and hence
SI is invariant.

V. APPLICATION: ROBOTIC ARM OBSTACLE
AVOIDANCE

We now apply the method to the problem of collision
avoidance in an environment with a robotic arm and a human.
An advantage of the implicit approach is that the implicit
safe set can be time-varying even when the backup set and
backup controller are not. The dynamics of the robotic arm
are described by the usual manipulator equations

M(q)q̈ + C (q, q̇) q̇ +G(q) = τ, (23)

where q describe the joint angles and τ is a vector of applied
torques.

For manipulators with many degrees of freedom the
explicit expressions for M(q), C(q, q̇) and G(q) are very
complicated. As an alternative, they can be evaluated at given
points via the Articulated Body Algorithm (ABA) that steps
over links of the manipulator [18]. Only having “black-box”
access to the equations of motion would pose a problem
for most methods for finding invariant sets, but the implicit
method proposed in this paper only requires access to the
numerical values of the dynamics and its derivatives. We
rewrite the dynamics on state-space form and also add a
time variable so that we can enforce safety of time-varying
sets: X = [q, q̇, t]T .

We now consider the 6-link IRB 6640 manipulator from
ABB, depicted in Figure 2. This robot has six degrees of
freedom, making the overall system in 13-dimensional.

Fig. 2. The IRB 6640 industrial manipulator.

A. Backup Set and Safe Set of the Robot

For the ARB 6640, the backup set is considered to be a
vertical tube around the robot. In practice, this would be a
small closed-off area that is inaccessible to the human. For
this implementation, it is described by the following set of
angle constraints:

SB =
{
X ∈ R13 | q2 =

[
− π

12
,
π

12

]
q3 =

[
− 7π

12
,−5π

12

]}
The safe set is then simply the union of the backup set and

complement of the reachable set of the human in space-time
over the duration of the backup control maneuver.

For the purpose of this demonstration, the human is
modeled as a single integrator with a maximum velocity,
meaning that the size of its reachable set grows linearly
in time. By adding time as a state, we prevent the filter
from being overly conservative, which would be the result if
we only used the reachable set of the human over the time
horizon of the backup controller.

If (x0, y0) is the current position of the human, the
reachable set of the human, or the complement of S, can
be simply expressed as an ellipsoid (or an n-cylinder [15])
centered at (x0, y0, H/2), where H is the height of the
human. We can then write this set as the superlevel set of a
time-dependent differentiable function h : Rn → R

h(t, x, y, z) = (x− x0)2 + (y − y0)2 +
(z −

√
H)2

H/(r0 + vmaxt)

− (r0 + vmaxt)
2

Thus, when h(t, x, y, z) > 0, for all points along the robot,
the robot is not contacting the human. Similarly to sampling
along the backup trajectory, we would theoretically need to
check an infinite number of points. Again, however, we can
pick a finite number of samples along the robot to enforce
this condition. This sampling does not affect the guarantee
on safety, as one can simply increase the radius of the human
r0 and the height Hh by the spacing between the points. It
does, however, add conservativeness to the problem, so the
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Fig. 3. The set describing the human at t0 and reachable set after one
second.

choice is sampling becomes a tradeoff between computa-
tional performance and system performance.

As the dynamics of the robot are defined in joint space,
and the safety set is defined in Cartesian space, one must
be careful when implementing the barrier condition. Let us
define our forward kinematics function, that takes us from
joint space to Cartesian space as K(q, t) : Rn+1 → R4,
augmenting it with the identity map for time.

Consider E = [x, y, z, t]T and X = [q, q̇, t]T . The gradient
of h with respect to the states is

∂h(E)

∂X
=
∂h(K(q))

∂X
=

(
∂h(E)

∂E
◦K(q)

)
∂K

∂X

where

∂K

∂X
=
[
∂K
∂q

∂K
∂q̇

∂K
∂t

]
=

[
J ~0 Jq̇
~0 ~0 1

]
where the Jacobian J is calculated numerically.

B. Backup Controller

For the backup controller, we will leverage the power of
the recursive Newton-Euler algorithm (RNEA) [19], which
provides the necessary joint torques to generate desired
joint accelerations. The flexibility of this method is again
showcased by the fact that we do not need an analytic
expression for the backup controller, as long as we know
its gradient.

There are only two joints that require actuation to reach
the backup set. A simple PD controller is used to obtain
desired joint accelerations for these joints, which is fed into
the RNEA that generates the control inputs, as well as their
gradient. The controller is of the form,

ades(q, q̇) = −kp(q − qd)− kd(q̇)
ub(q, q̇) = RNEA(q, q̇, ades(q, q̇))

CONT ASIF PLANT
udes uact q, q̇

TASK HUMAN

z

Fig. 4. Block diagram of the ROS nodes used in the simulations.

The gradient of this backup controller, which is required to
evaluate (17) online, is described by

∂ub
∂q

=
∂RNEA
∂q

+
∂RNEA
∂ades

∂ades

∂q
=
∂RNEA
∂q

− kp
∂RNEA
∂ades

,

∂ub
∂q̇

=
∂RNEA
∂q̇

+
∂RNEA
∂ades

∂ades

∂q̇
=
∂RNEA
∂q̇

− kd
∂RNEA
∂ades

,

∂ub
dt

= 0.

Since the RNEA provides the exact torques needed to
achieve desired joint accelerations, the forward invariance
of the backup controller is almost trivially guaranteed under
the proper choice of desired joint accelerations.

VI. RESULTS

The rigid body algorithm library used for this simulation
is Pinocchio [20]. This C++ library has been shown to
be the fastest of its kind, with the Table I illustrating the
average computation times of each necessary expression for
our robot.

TABLE I
COMPUTATION TIME OF IRB 6640 IN PINOCCHIO

Expression Time (µs)

Affine forward dynamics (f(x) and g(x)) 4
Gradient of closed-loop forward dynamics 42
Backup controller 5
Gradient of backup controller 31

A ROS environment was created to simulate the system,
with V-REP used as a visualizer. The ROS package con-
sisted of five nodes: the robotic arm (PLANT), the task
giver (TASK), a nominal controller (CONT), the human
(HUMAN), and the safety filter (ASIF), connected as shown
in Figure 4. Each component of the system ran at 200 Hz on
a desktop PC with an Intel 8700k processor. The dynamics
were integrated in the plant node via the Boost C++ library,
with the runge kutta dopri5 scheme over the timestep
of 5 ms.

The controller node tracked a sequence of desired end-
effector positions, given to it by the task giver node. Once
the system reached the desired position, the task giver would
send a new desired location to the system. The RNEA is also
used for this tracking controller.

The human node allowed the user to joystick a human,
modeled as a single integrator, around the factory floor.

Lastly, the safety filter node handled safety for the system.
It takes in the state from the plant and the desired inputs from
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Fig. 5. Value of the Barrier Function with and without ASIF engaged.

the controller, and outputs the actual inputs that are used for
integration by the plant.

The ASIF uses an adaptive-step RK4 scheme for integra-
tion under the backup controller, and the resulting quadratic
program is solved by the OSQP library [21].

Figure 5 shows the value of the ASIF when a human
attempts to pass through the arm. This image well illustrates
the minimally invasive property of the ASIF, as the filter
keeps the value of h(x) just barely above zero. For a more
clear demonstration of the filter’s capabilities, please see [22]

VII. CONCLUSION

In this paper, we demonstrated how safety can be guar-
anteed for robotic manipulators in dynamic environments
through the use of an implicit active set invariance filter. To
do this, we first rigorously showed how this theory can be
adapted to practice where only finitely many constraints can
be satisfied. Critically, we demonstrated how the filter can
handle dynamic environments and time-varying safety sets
while requiring no offline computations. We demonstrated
the minimally invasive aspect of this filter, while also proving
the validity of our numerical scheme, by applying the method
to a high-dimensional, complex system whose dynamics
were not known analytically. To further improve the method,
ways to handle uncertainty in the dynamics and sensing will
be explored. To further improve the application to robotic
arms, it would be possible to also implement barriers in the
joints to prevent self-collision as well as improve the overall
safety of the robot and its environment.
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