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Abstract—Artificial potential fields (APFs) and their variants
have been a staple for collision avoidance of mobile robots and
manipulators for almost 40 years. Its model-independent nature,
ease of implementation, and real-time performance have played
a large role in its continued success over the years. Control
barrier functions (CBFs), on the other hand, are a more recent
development, commonly used to guarantee safety for nonlinear
systems in real-time in the form of a filter on a nominal controller.
In this paper, we address the connections between APFs and
CBFs. At a theoretic level, we prove that APFs are a special case
of CBFs: given a APF one obtains a CBFs, while the converse
is not true. Additionally, we prove that CBFs obtained from
APFs have additional beneficial properties and can be applied to
nonlinear systems. Practically, we compare the performance of
APFs and CBFs in the context of obstacle avoidance on simple
illustrative examples and for a quadrotor, both in simulation
and on hardware using onboard sensing. These comparisons
demonstrate that CBFs outperform APFs.

I. INTRODUCTION

As mobile robots become increasingly popular in society,
many hobbyists and companies are tasked with the challenge
of keeping their robots from colliding with people, objects,
and other robots. A real-time obstacle avoidance framework
is necessary for ensuring that the operator is able to safely
utilize the product. The goal of such a framework is to provide
safety, but minimally alters the behavior of the robot when it
is far away from any potential collisions. While many options
exist for this task, few are as simple, easy to implement, and
well-established as potential fields.

Artificial Potential Fields (APFs) have been utilized for over
thirty years in the context of real-time obstacle avoidance.
They were first in the seminal paper by Khatib [1], and has
since been developed further, beginning with computational
methods [2]. Of particular importance to this work, there
has also been significant work in applying APFs to obstacle
avoidance [3], [4], including dynamic obstacles [5]. Work has
also been been done on improving the behavior of artificial
potential fields, particularly in dealing with undesirable oscil-
lation behavior [6]. Finally, the search for effective methods
for path planning using APFs has continued [7], including
application to UAV path planning [8].

Control barrier functions (CBFs) were introduced recently
[9], [10], and serve as a method for providing safety guarantees
of nonlinear systems via optimization-based controllers. They
are commonly used in the safety-critical controls community
due to their robustness [11] and real-time performance capabil-
ities, even for dynamic robots [12], [13]. They have, therefore,
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Fig. 1: Quadrotor given a waypoint on the other side of wall,
and stopping before colliding using control barrier functions.

found application in a variety of domains: automotive safety
[14], robotics [15], [16], multi-agent systems [17], [18] and
quadrotors [19]. See [20] for a recent survey.

Given the historic use of artificial potential fields, and
the recent popularity of control barrier functions, the natural
question to ask is: How do control barrier functions compare
to artificial potential fields?

The major contribution of this work is a comparative
analysis of CBFs and APFs—both theoretically and through
simulation and experimental results on obstacle avoidance.
At a formal level, we establish that APFs can be used to
synthesize a specific instance of a CBF, thereby showing that
CBFs are more general than APFs. Additionally, this trans-
lation results in beneficial properties: it (pointwise) optimally
balances avoidance and goal attainment, is well defined if the
system leaves the safe set, and allows one to generalize APFs
to nonlinear control systems. From a comparative perspective,
we begin with simple examples to illustrate the beneficial
properties of CBFs vs. APFs, followed by high-fidelity simula-
tions of a quadrotor for different obstacle avoidance scenarios.
Finally, these same scenarios are carried out experimentally
on a quadrotor with onboard sensing. We conclude from these
comparisons that CBFs outperform APFs in the context of
providing smooth behaviors that are minimally invasive while
guaranteeing obstacle avoidance.

The layout of the paper is as follows. Section II provides
an overview of the APF and CBF methods, and illustrates
their differences via an example of obstacle avoidance with
single integrator dynamics. Section III further details control
barrier functions, and presents the main theoretic results of
the paper including the fact that APFs are a special case of
CBFs. Section IV presents simulation results with velocity-
based controllers obtained from CBFs and APFs, which are
compared in a series of scenarios. Finally, Section V show-
cases the hardware results realizing APFs and CBFs on a
quadrotor utilizing only onboard sensing and computation.
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II. BACKGROUND & MOTIVATION

In this section, we give a brief background on artificial
potential fields and control barrier functions, and illustrate
their similarities and differences via an example associated
with obstacle avoidance for a single integrator in the plane.
This comparison will be formalized in the next section, where
more general forms of potential fields and control barrier
functions will be considered. Importantly, as the motivation
in this section suggestions, we will see that control barrier
functions are a generalization of potential fields.

A. Artificial Potential Fields

We begin by considering artificial potential fields (APFs)
in the setting of obstacle avoidance. A variety of potential
functions can be utilized, but this section will look at the
original formulation [1]. In this context, consider a control
system described by a single integrator:

ẋ = v, (1)

with x ∈ Rn is the position, and v ∈ Rn is the velocity.
Here v is viewed to be the control input to the system. The
goal is to synthesize a desired velocity profile that reaches
a goal position while avoiding one or multiple obstacles.
The motivation for considering a single integrator is that the
resulting behavior of this system can, for example, be utilized
as desired velocity profiles for end-effector positions for a
robot manipulator (n = 3) wherein classic Jacobian methods
can be utilized [3].

To explicitly present artificial potential fields, per the origi-
nal formulation in [1], let xgoal the goal position. This exerts
an attractive potential to the system given by:

Uatt(x) =
1

2
Katt ‖x− xgoal‖2 . (2)

Any obstacles in the area assert a repulsive potential, given by

Urep(x) =

0 ρ(x) > ρ0
1
2Krep

(
1

ρ(x) −
1
ρ0

)2
ρ(x) ≤ ρ0

(3)

where ρ(x) is the distance to the obstacle or the distance from
a safe region around the obstacle, e.g.:

ρ(x) = ‖x− xobs‖ −Dobs, (4)

for Dobs > 0, and ρ0 is the region of influence. The potential
function is set to zero outside of this region to allow the
attractive potential to dominate over large distances.

To obtain a feedback controller that pushes the system to
the goal while avoiding obstacles, the attractive and repulsive
potentials are combined and the gradient is taken:

FAPF(x) = −∇Uatt(x)−∇Urep(x). (5)

with ∇U−(x) = ∂U−
∂x (x)T and:

∇Uatt(x) = Katt(x− xgoal) (6)

∇Urep(x) =
Krep

ρ(x)2

(
1

ρ(x)
− 1

ρ0

)
(x− xgoal)

ρ(x)
. (7)

For a single integrator (1), where one directly controls velocity,
we simply apply this force as the velocity input:

ẋ = FAPF(x)

yielding a gradient dynamical system with respect to the
attractive and repulsive potentials.

Example 1. Consider a mobile robot modeled as a single
integrator travelling in the plane: n = 2. The initial position
is x0 = (0, 0), and the goal position is xgoal = (3, 5). There
are two obstacles, at xO1 = (1, 2) and xO2 = (2.5, 3), that
the mobile robot must not come within 0.5 meters of these
obstacles.

The new distance function for obstacle i is ρ = ‖x− xOi‖−
0.5. Using Katt = Krep = 1, with varying values of ρ0, we
have the result shown in Figure 2(a). As can be seen in this
figure, the potential field works well at ρ0 values of 1 and
0.25, but it gets stuck in a local minimum at ρ0 = 0.5,
and oscillations start to occur at ρ0 = 0.1. Potential fields,
therefore, work well when properly tuned, but can suffer from
oscillations—due to the interaction between the attractive and
repulsive forces—when not tuned properly.

B. Motivating Control Barrier Functions
To motivate control barrier functions, we again consider

the the single integrator in (1). For this system, we wish to
formulate safety-critical controller synthesis. In this context,
consider a safety function h : Rn → R defining a safe set:

S = {x ∈ Rn : h(x) ≥ 0}.

That is, the system is “safe” when the function h is positive.
One can view this set as the complement of the obstacles. That
is, one can utilize ρ and define:

h(x) = ρ(x) = ‖x− xobs‖ −Dobs ≥ 0

where now the safe set S is the set we wished to render safe
with the potential fields.

It is not possible to directly ensure safety of the system
by simply checking on the positivity of h. Therefore, we
can instead consider a derivative condition on h that can be
checked instantaneously—this is analogous to potential fields
wherein one looks at the gradient of the potential functions.
This lead to the recent introduction of control barrier functions
[9], [10] (see [20] for a more detailed history). The function
h is a control barrier function if for all x (in the domain of
interest) there exists a v such that:

ḣ(x, v) = ∇h(x)T ẋ = ∇h(x)T v ≥ −αh(x) (8)

for α > 0. In this case, given an input v(x) that satisfies this
inequality, consider the closed loop system ẋ = v(x) with
solution x(t) and initial condition x(0) = x0 wherein, because
v(x) satisfies (8) the set S is forward invariant, i.e., safe:

x(0) = x0 ∈ S ⇒ x(t) ∈ S ∀ t ≥ 0. (9)

Thus, the existence of a control barrier function implies safety.
For example, one could verify that the potential field controller
yields safe behavior by verifying that, for h(x) = ρ(x),

ḣ(x, FAPF(x)) ≥ −αh(x).



(a) Artificial Potential Field (b) Control Barrier Function (c) APF-based CBF

Fig. 2: Comparison of potential fields and control barrier functions at various values of ρ0 and α

Control barrier functions can be used to synthesize con-
trollers that ensure safety, as defined in (9), even given a
desired velocity: vdes(x, t). Specifically, the input v ∈ Rn
can be explicitly found that satisfies the inequality in (8)
if ∇h(x) 6= 0, i.e., if h has relative degree 1 subject to
minimizing the difference between this input and and the
desired input. This can be framed as an optimization problem,
and specifically a quadratic program (QP):

v∗(x, t) = argmin
v∈Rn

‖v − vdes(x, t)‖2 (10)

s.t. ∇h(x)T v ≥ −αh(x),

where v∗(x, t) is the pointwise optimal controller. This is an
important and substantial divergence from potential fields in
that gradients are no longer used for synthesis. Rather, one can
optimize over controllers that satisfy the safety constraint. To
see how this difference manifests itself, we return to Example
1 but, instead, apply control barrier functions.

Example 2. Consider the same setup as Example 1. The
desired velocity command is a simple P controller on position,

vdes(x, t) = −K(x− xgoal), (11)

with K = 1. Note that this is equivalent to the ∇Uatt from
the previous example, as the attractive force functions as a P
controller on position. The control barrier function, as inspired
by ρ in (4), is given by:

h(x) = min
i∈{1,2}

‖x− xOi‖ −Dobs, (12)

where ∇h(x) = x−xOi

‖x−xOi‖ , for the closer obstacle i, and
here we pick Dobs = 0.5. Note that, technically, this barrier
function is non-smooth, but the methods from [18] can be
employed. Practically, the obstacles are distances so no issues
with continuity are encountered.

The simulation is run for varying values of α, and the
results are shown in Figure 2(b). For all values of α, the robot
safely completes the mission and suffers from no oscillations.
Additionally, one can see the minimally invasive behavior of
(10) in that the nominal trajectories to goal are modified to a
much smaller degree when compared against potential fields.

III. POTENTIAL FIELDS AS CONTROL BARRIER
FUNCTIONS

In this section, we show the main result of this paper:
that potential fields are a specific instance of control barrier
functions. This will be demonstrated by explicitly constructing
a CBF from a potential field. Importantly, this transformation
results in additional beneficial properties that the original
controller did not benefit from. Thus, control barrier functions
generalize potential fields. Subsequent sections will practically
demonstrate this in simulation and on hardware.

A. Control Barrier Functions

We begin by introducing the general definition of control
barrier functions, for which the constructions in Section II-B
are a special case. In particular, the advantage of CBFs is
that they can be applied to general nonlinear control systems.
Consider a nonlinear system of the form:

ẋ = f(x) + g(x)u. (13)

with state x ∈ Rn, input u ∈ Rm, and f, g : Rn → Rn
assumed to be Lipschitz continuous.

Definition 1 ([10]). Let S ⊂ Rn be the set defined by a
continuously differentiable function h : Rn → R:

S = {x ∈ Rn : h(x) ≥ 0},
∂S = {x ∈ Rn : h(x) = 0},

Int(S) = {x ∈ Rn : h(x) > 0}.

Then h is a control barrier function (CBF) if ∇h(x) 6= 0
for all x ∈ ∂S and there exists an extended class K function
([10, Definition 2]) α such that for all x ∈ S, ∃u s.t.

Lfh(x) + Lgh(x)u︸ ︷︷ ︸
ḣ(x,u)

≥ −α(h(x)). (14)

where Lfh(x) := ∇h(x)T f(x) and Lgh(x) := ∇h(x)T g(x).

The main control barrier function result is that this class
of functions give sufficient (and necessary) conditions on set
invariance, i.e., safety of the system relative to S.



Theorem 1 ([10]). Given a control barrier function h :
Rn → R together with the associated set S, for any Lipschitz
continuous controller satisfying:

ḣ(x, u(x)) = Lfh(x) + Lgh(x)u(x) ≥ −α(h(x)),

the set S is forward invariant, i.e,. safe. Additionally, the set
S is asymptotically stable.

Since the constraint (14) is affine in u, the above definition
can be used to construct a quadratic program that functions
as a safety filter, guaranteeing the safety of the system by
enforcing it to stay inside of S. This quadratic program is
given by:

u∗(x) = argmin
u∈Rm

‖u− udes(x, t)‖2 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x))

Importantly, this QP has an explicit solution given by:

u∗(x, t) = udes(x, t) + usafe(x, t) (15)

where usafe is added to udes if the nominal controller would
not keep the system safe, which is determined by the sign of
Ψ(x, t;udes) := ḣ(x, udes(x, t)) + α(h(x)) via:

usafe(x, t) =

{
− Lgh(x)

T

Lgh(x)Lgh(x)T
Ψ(x, t;udes) if Ψ < 0

0 if Ψ ≥ 0

(16)

Through this explicit form, one can begin to see the divergence
between potential fields and CBFs: the condition statement
indicates that safety is imposed only when necessary rather
than always (via the addition of potentials).

B. Potential Fields as a Special Case of CBFs

We now present the main result of the paper: showing that
from a potential field one obtains a control barrier function.
Importantly, one can use this understanding of potential fields
to obtain additional beneficial properties of a given potential
field: from safe set stability to the generalization of potential
fields to general nonlinear control systems.

Definition 2. Given a goal state, xgoal ∈ Rn, an attractive
potential is a positive definite continuously differentiable
function Uatt : Rn → R, such that there exists c, c > 0 such
that, ∀ x ∈ Rn:

c‖x− xgoal‖2 ≤ Uatt(x) ≤ c‖x− xgoal‖2.

Given an obstacle at xobst and minimum distance Dobst > 0,
a repulsive potential is a continuously differentiable positive
semi-definite function Urep : Rn → R, strictly increasing, that
“blows up” at the minimum distance:

Positive semi-definite: Urep(x) ≥ 0,

Strictly increasing: ∇Urep(x) > 0 if ‖x− xobst‖ ≤ ρ0
“Blows up” at obstacle: lim

‖x−xobst‖→Dobst

Urep(x) =∞.

An artificial potential field: U(x) := Uatt(x) + Urep(x),
yields a controller:

k(x) = −∇U(x) ⇒ ẋ = −∇U(x).

Note that the potential functions used in the previous section
meet this definition.

Main result. The CBF paradigm includes potential fields as a
special case. In this case, rather than combining the attractive
and repulsive potentials into a single function, we utilize the
attractive potential as the desired velocity, and the repulsive
potential as the control barrier function.

Theorem 2. Consider an artificial potential field with repul-
sive potential Urep meeting Definition 2. The function:

h(x) =
1

1 + Urep(x)
− δ, (17)

with δ ∈ (0, δ0) a small constant, is a control barrier function
for the single integrator: ẋ = v. Additionally, given any
feedback controller v = k(x) satisfying:

ḣ(x, k(x)) = ∇h(x)T k(x) ≥ −α(h(x))

the set

S = {x ∈ Rn : h(x) ≥ 0} ⊂ {x ∈ Rn : ‖x−xobst‖ ≥ Dobst}
is forward invariant, i.e., safe, and asymptotically stable.

Remark 1. Note that the set S depends on the choice of δ
with:

lim
δ→0
S = {x ∈ Rn : ‖x− xobst‖ ≥ Dobst}.

Thus, the smaller the choice of δ, the closer the safe set,
S, to the complement of the obstacles. Additionally, unlike
potential fields, in the case when the system starts with an
initial condition outside of S the CBF will both be well defined
and the system will asymptotically stabilize back to S.

Proof. Taking the gradient of h(x) yields

∇h(x) = − ∇Urep(x)

(1 + Urep(x))2
.

To be a control barrier function, we first require that ∇Urep 6=
0 when h(x) = 0. When h(x) = 0, we have that

1

1 + Urep(x)
− δ = 0 =⇒ Urep(x) =

1

δ
− 1

Since Urep “blows up” with proximity to obstacles, one can
pick δ0 > 0 such that for all δ ∈ (0, δ0) it follows that h(x) =
0 implies that ‖x − xobst‖ ≤ ρ0. Therefore, by the strictly
increasing assumption, ∇Urep 6= 0.

For the single integrator dynamics, the CBF requirement
given in Equation (14) is trivially met, as Lfh(x) = 0 and
Lgh(x) = ∇h(x)T v, so there always exists a velocity such
that − ∇Urepv

(1+Urep(x))2
≥ −α(h(x)). Therefore, h is a CBF and

the remaining statements follow from Theorem 1.

Controller synthesis. The advantage of CBFs is that they
allow for controller synthesis where the attractive and repul-
sive potentials are combined in a pointwise optimal fashion.
Specifically, using −∇Uatt(x) as the desired velocity, we have:

v∗(x) = argmin
v∈Rn

‖v +∇Uatt(x)‖2 (18)

s.t. −
∇UTrepv

(1 + Urep(x))2
≥ −α(h(x)).



Importantly, this controller has an explicit solution:

v∗(x) = −∇Uatt(x) +

{
− ∇h(x)
∇h(x)T∇h(x)Ψ(x;Uatt) if Ψ < 0

0 if Ψ ≥ 0

(19)

for Ψ = Ψ(x;Uatt) := −∇h(x)T∇Uatt(x) + α(h(x)).
Note the parallels between this function and the original arti-

ficial potential field, where the repulsive potential only plays a
difference when within a certain radius ρ0. Now, the attractive
potential is used unless −∇h(x)T∇Uatt + α(h(x)) < 0, in
which case the CBF minimally alters the velocity inputs in
order to maintain safety.

Example 3. Consider the APF given in Example 1. The
repulsive potential is given by (3), which is used to make
the barrier function (17), with value δ = 0.001. The attractive
potential given by (3) with gradient (6) is used in the desired
velocity controller.

By applying the APF-CBF QP given in (18) or the explicit
solution (19), the path shown in 2(c) is obtained for tuning
parameters Krep = Katt = α = 1. One can see improved per-
formance for the APF-CBF QP obtained from the APF when
compared against the original APF, wherein the APF-CBF QP
gets closer to the obstacles with fewer oscillations. Moreover,
when the robot has passed the obstacle and is moving towards
the goal, the APF-CBF converges more quickly to the desired
path.

Extending APFs to nonlinear systems. It is important to
note that the connection between APFs and CBFs allows for
potential fields to be generalized to a nonlinear setting with
ease. In particular, since CBFs are defined general nonlinear
control systems, as in (13), we can use the instantiation of
APFs as CBFs to easy extend APFs to a nonlinear setting.

Proposition 1. Consider a nonlinear control system of the
form: ẋ = f(x) + g(x)u. Assume the existence of a potential
field as given in Definition 2 with the associated safety
constraint, h, given in (17). If the repulsive potential, Urep,
satisfies the CBF condition:

∇Urep(x)T g(x) = 0 ⇒ −∇Urep(x)T f(x)

(1 + Urep(x))2
≥ −α(h(x)),

for some extended class K function α then the controller:

u∗(x) = argmin
v∈Rn

‖u+∇Uatt(x)‖2 (20)

s.t. −
∇UTrep(f(x) + g(x)u)

(1 + Urep(x))2
≥ −α(h(x)).

renders the set {x ∈ Rn : ‖x − xobst‖ ≥ Dobst} forward
invariant, i.e., a controller that ensures safety.

Proof. The CBF condition is simply: Lgh(x) = 0 implies that
Lfh(x) ≥ −α(h(x)). One can verify that this implies that (16)
is well defined, thus (14) is satisfied and h is a CBF. The result
then follows by combining Theorem 1 with Theorem 2.

IV. APPLICATION TO QUADROTORS

In the previous sections, our examples involved single
integrators where the velocity commands from the APFs and
the CBFs are tracked perfectly by the system. This section
will consider the application of the ideas presented on systems
with non-trivial dynamics and, specifically, quadrotors. While
we could apply the previous results, e.g., Proposition 1, this
would require both detailed model information and the ability
to achieve torque control. On quadrotors this is difficult in
practice. We thus describe the process of translating the formal
results to practice via velocity-based tracking controllers.

Motivation: double integrator. To illustrate the issue with
utilizing model-free collision avoidance on systems with non-
trivial dynamics, we will compare the performance of the same
artificial potential field and control barrier function described
in Examples 1 and 2, but applied to a double integrator:

ẋ = v

v̇ = u
(21)

The velocity outputs of the safety filters, denoted v∗(x), are
now tracked by the velocity-based controller:

u(x, v) = −K(v − v∗(x)). (22)

The velocity-based controller is implemented for v∗ ob-
tained from APFs and CBFs (per Examples 1 and 2). For
the APF, the ρ0 values of 1 and 2, the APF is able to
keep the system safe while reaching the goal. However, large
oscillations occur while approaching the first obstacle. The
oscillations are not present with ρ0 equal to 0.5, but safety is
no longer maintained. Eliminating these oscillations and main-
taining safety is possible, but would require additional tuning.
For CBFs, safety could be trivially guaranteed by utilizing
the double integrator dynamics in the CBF-QP, but we instead
utilize the velocity-based controller from Example 2. Safety is
maintained for α values of 0.5 and 1, but it is not maintained
for α = 2. This biggest difference between the performance
of the CBF and the APF is the lack of oscillations when
approaching the obstacles, with CBFs resulting in smoother
controllers. This is a trend that will be seen in simulation and
experimentally on the quadrotor.

Fig. 3: Potential Fields and CBFs on a double integrator.



Fig. 4: Simulation results for the quadrotor with APFs and CBFs for the five scenarios considered in this paper.

Application to Quadrotors in Simulation. To provide
a more realistic comparison of APFs and CBFs realized as
velocity-based controllers (22), we consider their application
to quadrotors in the context of obstacle avoidance. In
particular, we compare the APF and CBF velocity-based
controllers in a high-fidelity simulation environment based
on the physical hardware that will be detailed in the next
section (see Fig. 5). The dynamics and low-level control is
provided by the ArduPilot SITL simulator, and the velocity
commands are produced and filtered in ROS nodes using
simulated LIDAR sensor data from Gazebo.

In the context of the APF velocity-based controller, we will
utilize the general form given in Example 1, with the same
attractive potential as given in (2). The repulsive potential is
replaced with a more modern potential field formulation that
has been tuned for a quadrotor in simulation—this was done
to avoid the repulsive potential from becoming ill-posed when
realized in practice. In particular, the repulsive potential is
taken from [21] yielding the repulsive force:

Frep = (x− xOi)Krep exp

(
−ρ

2

ρ0

)
(23)

with ρ = ‖x− xOi‖. The values of Krep and ρ0 were tuned
until oscillations vanished in practical cases, and safety was
achieved, but optimized such that they do not affect flight when
collision is unlikely.

For the CBF-based velocity controller, we use a formulation
identical to Example 2. In particular, the barrier function is
given as in (12), where xOi is the ith point of the simulated
laser scan, and Dobs = 0.3 represents the minimum distance
that the drone must maintain from the obstacles. Utilizing this
with the single integrator dynamics results in the control law in
(10) which is passed to a low-level velocity tracking controller.
The value of α kept to 1, to ensure that no tuning is performed
to improve the results.

For each experiment, the quadrotor is given a waypoint 5m
ahead in the x-direction. The five tests are described as follows,
in order of difficulty for the collision avoidance algorithms:
(1) in between the quadrotor and the goal, two obstacles are
placed that are offset from the center of the path, but close
enough to effect the drone. (2) A single obstacle is placed
such that the edge of the obstacle aligns with the center of
the drone. This is done to ensure that the drone is able to find
a path around it, but to strongly obstruct the drone. (3) Two
obstacles are placed with edges 1 m apart, to mimic a 1 m
wide doorway, and the drone has to fly through this to reach
the goal. (4) The doorway from the previous test is reduced

to 0.7 m in width. (5) In between the starting position and the
goal is a large wall that the drone is not able to pass. This is
to test the oscillations that may occur when running directly
at an obstacle that is in front of the goal.

Each of the five tests are run for both the artificial potential
field, as well as the control barrier function. The setups and
paths are shown in Figure 4, along with the velocities. Oscilla-
tions do not occur for the CBF velocity-based controller, and
only occur for the APF based controller situations where the
drone is unable to get to the goal, e.g., the wall and the 0.7
m doorway. In all cases, the CBF is able to get closer to the
obstacles while staying safe due to its pointwise optimally.

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of the two
methods on a quadrotor. Localization and obstacle detection
are done entirely onboard, using onboard sensors, making this
a very practical comparison for real-world use. Practically, we
realize the APF and CBF controllers as outlined in Sect. IV.

Hardware setup. The quadrotor used for experiments is
shown in Figure 5. It consists of a Lumenier Defender frame,
four T-Motor F40 PRO II 1600 KV brushless motors, a Lu-
menier 50A 4-in-1 ESC, a mRobotics Pixracer R15 autopilot,
a T265 RealSense camera, a Intel NUC i7 onboard computer,
and a Hokuyo UST-10LX LIDAR. The Hokuyo UST-10LX
2D LIDAR gives 1080 points in front of the quadrotor in a
270◦ field of view along the XY plane. Google’s Cartographer
SLAM package was used with the Hokuyo LIDAR and the
RealSense camera for localization. Additionally, the Hokuyo
LIDAR is used for obstacle detection and avoidance. An Intel
NUC i7 onboard computer is used to run the ROS nodes
that perform the localization and collision avoidance. The
high-level velocity commands are passed from the onboard
computer to the Pixracer flight controller. The flight controller
utilizes a cascading PID control structure of velocity, acceler-
ation, attitude, and angular rate.

Simulation vs hardware results. The same five tests de-
scribed in the previous section (see Fig. 4) were implemented
on the hardware, and the results are shown in Fig. 7. The
only difference in the setup was that the drone is now
commanded to yaw 180◦ and return along the same path,
in order to maximize the amount of data for the analysis.
While the hardware results are similar to simulation for CBFs,
the artificial potential field suffers from significantly more
oscillations than in the high-fidelity simulation environment.
This suggests that the CBF implementation is more robust to



Fig. 5: The quadrotor used in the experiments.

model uncertainty and noise, as the APF would need to be
tuned again to eliminate oscillations due to the differences
between the simulation and reality. Finally, APFs fail to reach
the goal in the case of the narrow door, while the CBFs
succeeds. Thus, the CBFs outperformed APFs on hardware.

Manual flight. In addition to replicating the tests performed
in simulation, the drone was also piloted manually through a
more complicated obstacle course, to show the robustness of
the control barrier function to sporadic user inputs. The pilot
is trying to run the system towards the obstacles, but the CBF
prevents the drone from crashing. The results are shown in
Figure 6 where it can be seen that the quadrotor gets close to
the wall, but safety is maintained.

VI. CONCLUSIONS

In this paper, we showed that control barrier functions
offer a viable, and arguably improved, alternative to artificial
potential fields for real-time obstacle avoidance. It was shown
that artificial potential fields can be formulated as control
barrier functions, and the resulting behavior is smoother than
the APF alone. CBFs were then implemented on a quadrotor
via velocity-based control in simulation and on hardware,
with no tuning whatsoever, and the results outperformed the
existing (expertly tuned) APF-based collision avoidance sys-
tem. Future work includes extending the model-based formal
guarantees presented in this paper to the velocity-based model-
free controller implemented in practice, along with further
hardware demonstrations on dynamic robotic systems.
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Fig. 7: Hardware results for the control barrier function and artificial potential field. Note that the APF showcases the drone as
it goes to the goal, while the CBF is pictured returning to the start position. Due to symmetry of the setup, these trips almost
identical for each method, and the plots contain data for the round trip. The video found here [22] shows both directions for
each of the experiments from three different angles. The first two columns show the velocities in the north and east directions,
and the final column shows the value of ρ(x)− 0.3 for the APF on the left, and h(x) for the barrier on the right.
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