
Safety-Critical Rapid Aerial Exploration of Unknown Environments

Andrew Singletary, Thomas Gurriet, Petter Nilsson, and Aaron D. Ames

Abstract—This paper details a novel approach to collision
avoidance for aerial vehicles that enables high-speed flight
in uncertain environments. This framework is applied at the
controller level and provides safety regardless of the planner
that is used. The method is shown to be robust to state
uncertainty and disturbances, and is computed entirely online
utilizing the full nonlinear system dynamics. The effectiveness
of this method is shown in a high-fidelity simulation of a
quadrotor with onboard sensors rapidly and safely exploring
a cave environment utilizing a simple planner.

I. INTRODUCTION

The most prevalent uses for drones, including deliveries,
exploration, environmental monitoring, and more, involve
navigating through unknown or uncertain environments. Due
to the altitude of the vehicles and their often exposed pro-
pellers, collisions are catastrophic for the drone and might
also be dangerous for its surroundings. For this reason,
collision avoidance techniques are crucial to further the use
of these systems in everyday life.

In typical drone flight, collision avoidance is the process
of creating and tracking trajectories that take the drone
through the surrounding free space and avoid occupied or
uncertain space. While this approach to collision avoidance
can be effective in practice, as evidenced in [1]–[3], it is
typically quite conservative and leads to slow mobility, or
lacks guarantees of collision-free paths. The conservative
aspect of these planners stems from two major hurdles: the
computational complexity of the planners that necessitate
simplified abstractions of the model and obstacles, and un-
certainty in the mapped environment.

Planning in uncertain environments requires frequent up-
dates to the planned trajectories as new information is gained.
It is intractable to plan feasible trajectories for the true
dynamics of these aerial vehicles in such short time, so
traditionally, a global planner with no regard for the system
dynamics creates a rough path to follow, and the local planner
uses this as a guide to create more realistic, shorter trajecto-
ries that can be tracked. Even the trajectories generated by the
local planner do not account for the full nonlinear dynamics,
as this would require solving a large nonlinear constrained
optimization problem, but are instead generated with other
assumptions that approximate dynamically feasible paths to
various degrees, such as triple integrator models with jerk-
limited trajectories [4], [5] or linearizations [6].

While there exist convincing results of collision avoidance
at the planning level, it is not the most effective layer

Andrew Singletary, Thomas Gurriet, Petter Nilsson, and Aaron D. Ames
are with Department of Mechanical Engineering, California Institute of
Technology, Pasadena CA 91125, U.S.A. Email addresses: {asinglet,
tgurriet, pettni, ames}@caltech.edu

Fig. 1. Simulation environment. The top shows the desired and filtered
velocity commands based on the closest point in the point cloud. The bottom
shows the drone navigating through the cave.

in which to enforce safety. Planners update are too infre-
quent, and there is too much uncertainty stemming from
the aforementioned hurdles to be able to provide rigorous
guarantees of safety with such a method. Instead, the authors
propose a rigorous approach to collision avoidance enforced
at the control level that relies solely on the local coordinates
and sensor information. This approach is robust to errors
or discontinuities in localization and mapping, and can be
applied in conjunction with any planning algorithm, or even
a human operator. Importantly, this method allows for more
primitive planning algorithms that are more aggressive, since
they do not need to guarantee collision avoidance or dynamic
feasibility.

Similar methods include usage of Hamilton-Jacobi reacha-
bility analysis to provide trajectory tracking error bounds [7],
which enables collision avoidance for any planner by inflating
surrounding obstacles by an appropriate margin. This works
very well for systems of low dimensionality (less than ∼ 5),
but becomes intractable with in higher dimensions, requiring
abstractions or simplifications for systems of nontrivial state

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 10270

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 23:52:17 UTC from IEEE Xplore. Restrictions apply.

Velocity
Controller

Safety
Filter

Performance
Filter

DronePlanner
XVdes

Vsafe

U

Vperf

LIDAR

Fig. 2. Structure of the safety filter. U is the control input driving the physical
system, X is the state, and V represents the desired velocity commands.

dimension. Another promising direction is to leverage a pre-
computed funnel library to chain together robust trajectories
at run time [8]. This method has displayed provably safe
control in the presence of uncertainty, but is somewhat limited
by the finite number of maneuvers in the library that restricts
the possible motions.

The novel method presented uses a multi-step filtering
approach: a rigorous regulation of the control system that
provides guarantees of safety at the level of dynamics, as well
as a filter on the desired high-level inputs given by the planner
that allows for high-speed travel. This approach requires no
offline reachability analysis or trajectory generation, and is
applicable to any aerial vehicle that is capable of reaching
a stable hover or landing reasonably quickly. A robustness
result is also presented, which extends the provable safety
to systems with state uncertainty and disturbances, making
the method more practical for real robots. Another strength
of this method is its ability to maintain safety using only
the point cloud data, removing the need to overapproximate
obstacles geometrically or through gridding.

The efficacy of this method is demonstrated by showcasing
safe, high-speed exploration of an uncertain environment
using a relatively simple planner and onboard sensing in
a high-fidelity simulation environment with measurement
uncertainty and unsensed disturbances.

The layout of the paper is as follows: Section II details the
method and how it is used to provide safety guarantees for the
system. Section III then outlines how state uncertainty and
external disturbances can be accounted for in the framework.
Section IV discusses details of the implementation, including
the development of the planner, and showcases simulation
results. Finally, Section V concludes the work and details
future research directions pertaining to this approach.

II. COLLISION AVOIDANCE FRAMEWORK

The collision avoidance strategy presented in this work
occurs in three stages as illustrated in Fig. 2. The safety
guarantees of this method come from the safety filter, which
regulates the control inputs in a minimally invasive way
such that the system never collides with its surrounding
environment. In order to improve the input regulation, the
system is first augmented with a velocity controller, making
linear velocities the control inputs to the safety filter, rather
than the PWM of the motors. To further improve the overall
performance of the system, another component, dubbed the
performance filter, is used to regulate the velocity inputs sent
from the planner in order to minimize the interventions from

Obstacles

Hard Margin
Soft Margin

hmin=0.98

98% Vperf
02% Vbak

hmin=0.02

02% Vperf
98% Vbak

hmin=0.02

02% Vperf
98% Vbak

hmin=0.98

98% Vperf
02% Vbak

hmin=0.99

99% Vperf
01% Vbak

Fig. 3. Illustration of the safety filter. From left to right is a depiction of
the evolution of the drone as it gets close to the obstacle. In yellow to blue
are the backup trajectories. In grey are the hypothetical positions of the
drone if it were to follow the backup trajectory. The size of the drone icon
corresponds to its velocity.

the safety filter. All these components then work together to
provide a filter with guaranteed collision avoidance, while
minimizing conservativeness.

A. Collision Avoidance on Point Clouds

Before detailing the method, it is important to discuss
obstacle representation in planning and collision avoidance
algorithms. The vast majority of collision avoidance algo-
rithms represent obstacles in one of two ways: either by
occupied grids in a map that is periodically updated from
point cloud data, or by geometrically representing obstacles
(e.g. each obstacle is a polytope or ellipsoid) by clustering
point cloud data. While the proposed method is able to
work with either of these representations, the authors believe
that there are notable advantages to operating directly on
the point cloud. Doing this allows for collision avoidance
to be done entirely locally, making it free from errors in
global localization and mapping. Operating on point clouds
also eliminates the inherit conservativeness of approximating
obstacles geometrically or by grids, while also benefiting
from the fastest update rates.

Because of these reasons, the authors will represent obsta-
cles simply as points in the point cloud, and a collision-
free state is considered to be one that maintains positive
distance to all points in the point cloud. In between point
cloud updates, the point cloud will be fixed, and localization
of the drone will be with respect to the fixed point cloud.
This representation also showcases the scalability of the
method with respect to obstacle resolution and the number of
obstacles, thus any other practical representation of obstacles
could be utilized instead.

B. Safety filter

Now, the rigorous safety filter will be presented. To prove
the safety of this system, some notation and concepts must
first be introduced.

Consider continuous-time affine control systems of the
form:

ẋ = f (x)+g(x)u. (1)

10271

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 23:52:17 UTC from IEEE Xplore. Restrictions apply.

The functions f and g defined on a compact set X ⊂ Rn

are continuously differentiable. The controller is restricted
to be a function u : R+×X −→ Rn that is locally Lipschitz
continuous in state over X and piecewise continuous in time
over R+. The set U ⊂ Rm is a compact and convex set of
admissible inputs for this system. The final assumption is
that system (1) has a unique solution for all time, and for
any initial condition x(0) ∈ Int(X).

The goal here is to keep a system in some subset of
its state-space that is considered safe, S ⊂ Rn. In order to
guarantee safety for dynamical systems, one must find a
control invariant subset of S that satisfies the following
property:

∀x(t0) ∈ S, ∃u(·) ∈U s.t. ∀ t > t0,x(t) ∈ S. (2)

If a set is control invariant, then there exists techniques in
nonlinear control theory to enforce safety [9], [10]. This
can be done by writing the set as the super-level set of a
continuously differentiable function h(x),

S = {x ∈ Rn | h(x)≥ 0}
∂S = {x ∈ S | h(x) = 0} ,

(3)

and enforcing the condition

∂h
∂x

(f (x)+g(x)u(x))+α(h(x))≥ 0, (4)

on the input u for some class-κ function α(·). In this context,
h(x) is known as a control barrier function, and for all
x(0)∈ S, the solution to (1) remains in S for all time. Finding
an explicit representation of control invariant sets, however,
is difficult even for simple systems, and intractable in the
general case. To avoid these complexities, the work presented
in [11] proposes to use sets that are implicitly defined as a
function of the flow of the system under a backup policy.

A backup policy is defined as a controller ub(x) that
desires to bring the system to some forward invariant set, Sb.
Note that verifying the invariance of a closed-loop system
is far simpler than computing a control invariant set. For
many aerial vehicles, this set Sb can be defined as a small
tube around a stable hover with near-zero angular and linear
velocities, as these vehicles can remain in such a set until
they run out of battery. Thus, a suitable backup policy would
be coming to a stop as quickly as possible, and thereafter
hold the position.

With the assumptions placed on the control system, it
holds that for all continuously differentiable ub there exists
a solution to (1) for all time. Therefore, one can define
φ

ub
t : [0,∞)×X → Rn to be the flow of (1) under the control

law ub.

Definition 1. The safe exploration space of the system
under the backup control policy is defined to be the set:

Ω
ub
T ,

{
x ∈ X |

(
φ

ub
T (x) ∈ Sb

)
∧
(
∀ t ∈ [0,T] , φ

ub
t (x) ∈ S

)}
.

(5)

It will be proven below that if the set Ω
ub
T is nonempty,

and x0 ∈Ω
ub
T , then under the backup policy ub(x), the system

is forward invariant, and thus remains in the free space for
all time. Notably, defining:

S, {x ∈ X | h(x)≥ 0} , (6)

Sb , {x ∈ X | hb(x)≥ 0} , (7)

with h and hb continuously differentiable, allows one to
express the safe exploration space as

Ω
ub
T =

{
x ∈ S | min

t∈[0,T]
h◦φ

ub
t (x)≥ 0∧hb ◦φ

ub
T (x)≥ 0

}
. (8)

Therefore:

hΩ
T (x), min

t∈[0,T]

{
h◦φ

ub
t (x) , hb ◦φ

ub
T (x)

}
(9)

is a control barrier function and one can define a filtering
policy that guarantees that if x(0) ∈ Ω

ub
T the system will

remain in Ω
ub
T , and thus in S.

In previous works [11], [12], it is shown that by integrating
sensitivity functions of the dynamics and the backup con-
troller, the barrier condition (4) can be enforced by solving
a convex optimization problem at each step, resulting in
an optimal control input that keeps the system safe. This
algorithm, while convex, is quite computationally expensive
for the types of processors that are used for small aerial
vehicles, whose computational resources are also needed for
sensing, mapping, planning, etc. Thus, a different strategy to
enforce the invariance of the system is presented below, that
requires no integration of sensitivity functions or optimization
problems.

Proposition 1. Given a smooth function α : X ×R→U, a
control law defined by

u(x) = α

(
x,hΩ

T (x)
)
, (10)

regulates solutions of (1) that stay in Ω
ub
T ⊆ S for all time if

for all x ∈Ω
ub
T :

α (x,0) = ub(x). (11)

Proof. From (5), we have that for all x ∈ Ω
ub
T , the flow

φ
ub
T (x) ∈ Sb and ∀t ∈ [0,T],φ ub

t (x) ∈ S. Since the system is
forward invariant under the backup control law, we have that,
under the backup strategy ub(x), the system stays in Ω

ub
T ⊆ S

for all time from any initial condition inside the set.
From the assumptions on the dynamics and backup con-

troller, we have that hΩ
T (x) is continuous, and thus know

that hΩ
T (x) will not become negative without passing through

0. Thus, before leaving Ω
ub
T , we have that hΩ

T (x) = 0. If
α (x,0) = ub(x), then the backup strategy will be employed
before leaving Ω

ub
T , and thus x is safe for all time.

Finally, to be able to evaluate the policy online, one only
has to be able to evaluate the flow of the system φ

ub
t for all

t ∈ [0,T]. Even though this cannot be done numerically for all
t ∈ [0,T], it can be approximated by numerically integrating
the dynamics and evaluating the flow on a finite set of points
in [0,T] (see [11]–[13]).

10272

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 23:52:17 UTC from IEEE Xplore. Restrictions apply.

O
b

st
ac

le
s

Closest

Point

Soft
Margin

Vperf Vdes

Fig. 4. Illustration of the performance filter.

C. Velocity controller

The velocity controller is a mapping from desired linear
velocities to the control input to the robot. Note that, for
some aerial vehicles, other desired outputs from the planner
can be added here. In the quadrotor example, the yaw rate is
also part of the desired velocity vector.

By augmenting the system with this velocity controller
in the formulation of the dynamics for the safety filter, it
becomes easier to generate the function α presented in the
previous section. This is because finding heuristics that result
in well-behaved obstacle avoidance is much easier at the
velocity level.

D. Performance filter

The performance filter is an advancement of a previous
work on a geofencing for civilian UAVs [14]. The idea
presented there is to remove the component of the velocity
vector in the direction of the nearest obstacle when the drone
is in close proximity, as illustrated in Fig. 4. As the drone
gets closer to the soft margin that defines how far away from
an obstacle one wishes to stay, more and more of the velocity
vector in that direction is removed. If the drone reaches the
inside of the soft margin, the velocity vector is altered to
push the drone back out.

Readers should note that, with perfect velocity control, this
method alone would guarantee safety of the system. However,
since this is not the case for physical systems, the above
safety filter is needed.

III. ROBUSTNESS

A drawback of the method showcased in previous works
[11] [12] is that, while the method was scalable to higher
dimensional systems, the computational complexity of the
method did not allow for any robustness guarantees to be
added. However, by eliminating the difficult gradient com-
putations and sensitivity integration, it is now possible to
provide guarantees on the safety of the system in the presence
of state uncertainty and disturbances.

This is important because, while the above framework
provides safety guarantees for the ideal case, if the initial

Obstacles

Hard Margin
Soft Margin

(robust) hmin (ideal)

Fig. 5. Illustration of a robust backup trajectory.

state of the vehicle is uncertain, or there are external forces
that impact the system, the guarantees no longer hold. For
safety to be established in a more realistic context, it must
be done for all possible backup trajectories resulting from all
possible initial conditions and disturbances.

Consider a vehicle governed by the closed loop dynamics

ẋ = f (x)+g(x)u(x)+d, (12)

where d ∈D represents a bounded additive disturbance term.
For such a system, the flow is a set valued map φ

ub
t : X⇒ X ,

and the backup trajectory is a tube. If the dynamics are linear
and the disturbance term additive, computing this tube can be
solved with little computational overhead using techniques
from linear reachability analysis [15]. Also, if a nonlinear
system is monotonic, reachability for additive disturbances
can be done almost trivially [16], however these types of
systems are rare in robotics. For more general systems,
several reachability analysis tools exist [17], [18], however
these tools are not well suited for online computation at the
update rates required for stable flight. Sampling-based meth-
ods would be more appropriate for online computation, but
proving high-confidence safety with these methods requires
much care and knowledge of how the dynamics evolve.

A suitable alternative to reachability algorithms for this
application is the use of interval arithmetic [19]. Since
the sets of possible initial conditions and disturbances are
bounded, we can represent them as intervals whose uncer-
tainty propagates through our evaluation of the dynamics and
subsequent integration. This results in the dynamics and thus
the flow of the system being set-valued functions whose range
of values grows over time.

One important caveat to consider while propagating uncer-
tainty is the effect that the uncertainty has on the controller.
As the set of reachable states for the system grows, the
set of possible input values grows as well for any sort of

10273

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 23:52:17 UTC from IEEE Xplore. Restrictions apply.

feedback controller. When these intervals enters the inputs,
the uncertainty of the system can blow up rapidly. In this
case, during integration, the nominal trajectory should be
used for the state feedback given to the controller during the
integration of the backup trajectory, i.e. the trajectory with
zero external disturbance starting from center of the initial
state interval.

Fig. 5 illustrates the concept of checking the safety
condition over the entire set of possible trajectories. The
dashed line shows one of the possible trajectories, which is
encompassed in the integration of the intervals of bounded
uncertainty. The size of the position uncertainty at the end
of the backup trajectory for a maximum disturbance of 1 N
in all directions is shown in Fig. 1 as xT .

IV. IMPLEMENTATION
In this section, we will detail the steps taken to imple-

ment the collision avoidance algorithm on a high-fideltity
quadrotor simulator, and showcase the method working with
a simple planner to explore a large 240m by 460m cave
system.

A video detailing this work and showcasing the exploration
can be found here [20].

A. Dynamics

The model used for the demonstration is a 16-dimensional,
nonlinear model of a quadrotor with voltage inputs, to be as
realistic to the actual system as possible.

A standard 12-dimensional model for a quadrotor is first
obtained from force-balance equations in a rotating reference
frame (e.g. [21], [22]). Let the 12-dimensional state be x =
[r,v,ξ ,ω]ᵀ, where r and v are position and velocity in R3,
ξ = [φ ,θ ,ψ]ᵀ are roll, pitch and yaw angles, and ω ∈R3 are
angular velocities in the quadrotor body frame. Then

M
d2

dt2 r =

 0
0
−Mg

+FzR(ξ)

0
0
1

 , (13a)

d
dt

ξ = T (ξ)ω, (13b)

J
d
dt

ω = τ− (ω× (Jω)). (13c)

Here R(ξ) is the x-y-z rotation matrix from a body-fixed
frame to the world frame, and T the resulting mapping
between angular velocities:

R(ξ) = Rz(ψ)Ry(θ)Rx(φ),

T (ξ) =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) −sin(φ)
0 sec(θ)sin(φ) cos(φ)sec(θ)

 . (14)

The vertical force and angular torques acting on the body
are obtained from motor angular velocities

Fz = k f
(
Ω

2
1 +Ω

2
2 +Ω

2
3 +Ω

2
4
)
, (15a)τx

τy
τz

=

−lk f −lk f lk f lk f
−lk f lk f lk f −lk f
−kt kt −kt kt




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 , (15b)

with l = D
2
√

2
and D the frame diameter. Since the angular

velocities of the propellers cannot be controlled directly, their
response to a voltage input Vi must be modeled. The equation
of motion for the angular velocity Ωi of each motor is

(Jrot + Jprop)Ω̇i =
1

KvR

(
Vi−

Ωi

Kv

)
− ktΩ

2
i . (16)

Disturbances enter the system through external forces acting
on the center of mass of the vehicle.

B. Attitude and Velocity Controller

The attitude controller is simple cascade PD controller on
the angles and angular rates of the quadrotor. The motor
voltages at the output of the velocity controller are given
by 

V1
V2
V3
V4

=


uz−uφ −uθ −uψ

uz−uφ +uθ +uψ

uz−uφ +uθ −uψ

uz−uφ −uθ +uψ

 (17)

where

uz = Kvz(vz,des− vz)+uhover(φ ,θ) (18)
uφ = Kφ (Kv(vy,des− vy)−φ)− kφ ωx (19)
uθ = Kθ (Kv(vx,des− vx)−θ)− kθ ωy (20)
uψ =−kψ(ωz,des−ωz). (21)

Note that the upper-case K gains are the proportional gains,
while the lower-case k gains are the derivative gains. Also,
uhover(φ ,θ) is the input required to maintain a constant
height.

C. Backup Controller and Safety Filter

The backup controller is simply the velocity controller fed
with a desired velocity of zero.

The filtering law α is chosen to be

vsafe = λ (x)vperf +(1−λ (x))vb, (22)

with
λ (x) = 1− e−3hΩ

T (x)/∆m , (23)

where ∆m is the difference between the soft and hard margin.
The backup policy vb being the same control law as the one
used in the performance filter.

D. Planner

The planner is designed to work in tandem with the
Octomap mapping library [23]. Octomap uses point cloud
data to construct a map that is stored in an octree. When a
point cloud ray passes through a voxel for the first time it is
added to the map, and afterwards an estimated occupancy
probability p is maintained. The map therefore segments
the space into free (with probability 1− p), occupied (with
probability p), and unknown.

In order to explore an unknown environment, one must
define frontier points as possible goals for the global planner.
For this implementation, a frontier is defined as a cell in free
space that is adjacent to unknown space. Due to the large
number of frontiers that are generated during exploration

10274

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 23:52:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Pictures of the cave (in red) and the octomap (in yellow) being built throughout the 28 minutes it takes for the drone to completely explore the
cave.

and the uncertainty inherent in mapping, nearby frontiers
are clustered together, and the planner uses cluster size as
a heuristic for target selection.

The global planner is a basic implementation of the A∗

algorithm that searches for a path to a nearby frontier cluster.
The search algorithm runs directly on the octomap, which
is possible via implementation of algorithms that enumerate
neighbors in a 3D octree [24]. The heuristic encourages the
planner to visit large clusters that are close to the current
position of the drone. After a global plan is achieved, the
local planner creates a spline to form a smoother version
of the global plan, as show in Fig. 1. In order to smoothly
track the spline, the velocity controller is given a desired
waypoint 2m in front of the closest point to the drone along
the spline. The position of the closest point along the spline
is estimated by discretizing the spline and searching for the
minimum distance over this countable set of spline points.
The closest point is also constrained to never cause the drone
to reverse along the spline. A path is recomputed using the
A∗ algorithm when the drone gets close to the end of the
spline, or if the last path is more than 10 seconds old.

E. Interval Arithemtic for Robustness

The Boost interval library was selected for this
implementation, with the rounding policy set to
save_state<rounded_transc_exact<double>>
to allow the use of transcendental functions. The data
types of the states were changed from double to
interval<double> to enable interval arithmetic.

In order to check the point cloud over the entirety of
the trajectory, the distance metric was changed to be the
minimum euclidean distance to the bounding box of possible
drone positions.

F. Simulation Environment and Results

The simulation environment is a ROS-based C++ envi-
ronment. The point cloud data is obtained from a Velodyne
LIDAR sensor inside of the Gazebo simulator at a frequency

of 10 hz. The simulation, including visualization in Gazebo
and RVIZ, was able to run at a frequency of 500 hz on a
modern laptop computer with an Intel i9 CPU.

The cave environment was a large 240m by 460m structure
with one entrance and one exit. The cave height is constant at
roughly 3m, but the width is constantly changing, and gets as
small as 0.75m with several protruding areas. For reference,
the size of the quadrotor is 0.5m in diameter.

The quadrotor was able to explore the entire 240m by
460m cave in just under 28 minutes. The maximum allowable
speed from the planner was 5 m/s, which the drone reached
during open areas of the cave. The average desired speed sent
from the planner was 4.09 m/s, and the average speed of the
drone after the safety filter was 3.28 m/s.

A positive value of the barrier function described in
Section II was maintained throughout, meaning the quadrotor
never went closer than the minimum allowed distance to a
point in the point cloud, which was set at 0.2 meters.

V. CONCLUSION

In this paper, the authors presented a novel approach for
collision avoidance at the controller level. This method uses
concepts from set invariance to provide safety guarantees
with respect to local point cloud data. This approach was
shown to work in a high-fidelity simulation environment with
a very simple planner with no offline computations.

For future work, we plan to apply this system on a
quadrotor with an Intel Realsense D435 providing point cloud
data. We also plan to more tightly integrate the planner and
the safety filter, allowing the safety filter to inform the planner
when there is a discrepency between the map and the point
cloud data.

Another possible research direction is applying this tech-
nique to moving obstacles. A disadvantage to planning over
maps is that they frequently update too slowly to reliably
plan high-speed trajectories in dynamic environments. This
could enable the proposed method to be a strong candidate
for planning in dynamic environments.

10275

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 23:52:17 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1688–1695,
2017.

[2] Y. Lin and S. Saripalli, “Sampling-based path planning for uav collision
avoidance,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 11, pp. 3179–3192, 2017.

[3] S. Hrabar, “3d path planning and stereo-based obstacle avoidance
for rotorcraft uavs,” in 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2008, pp. 807–814.

[4] J. Tordesillas, B. T. Lopez, and J. P. How, “FASTER: Fast and Safe
Trajectory Planner for Flights in Unknown Environments,” arXiv e-
prints, p. arXiv:1903.03558, Mar 2019.

[5] S. Lai, K. Wang, H. Qin, J. Q. Cui, and B. M. Chen, “A robust online
path planning approach in cluttered environments for micro rotorcraft
drones,” Control Theory and Technology, vol. 14, no. 1, pp. 83–96,
2016.

[6] J. Dentler, S. Kannan, M. A. O. Mendez, and H. Voos, “A real-
time model predictive position control with collision avoidance for
commercial low-cost quadrotors,” in 2016 IEEE conference on control
applications (CCA). IEEE, 2016, pp. 519–525.

[7] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin,
“Fastrack: a modular framework for fast and guaranteed safe motion
planning,” in 2017 IEEE 56th Annual Conference on Decision and
Control (CDC). IEEE, 2017, pp. 1517–1522.

[8] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” The International Journal of Robotics
Research, vol. 36, no. 8, pp. 947–982, 2017.

[9] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2017.

[10] J.-P. Aubin, Viability theory. Springer Science, 2009.
[11] T. Gurriet, M. Mote, A. D. Ames, and E. Feron, “An online approach

to active set invariance,” in 2018 IEEE Conference on Decision and
Control (CDC). IEEE, 2018, pp. 3592–3599.

[12] A. Singletary, P. Nilsson, T. Gurriet, and A. D. Ames, “Online active
safety for robotic manipulators,” in 2019 International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2019, p. Final Version
Submitted.

[13] T. Gurriet, M. Mote, A. Singletary, E. Feron, and A. D. Ames,
“A scalable controlled set invariance framework with practical safety
guarantees,” in 2019 IEEE Conference on Decision and Control (CDC).
IEEE, 2019.

[14] T. Gurriet and L. Ciarletta, “Towards a generic and modular geofenc-
ing strategy for civilian uavs,” in 2016 International Conference on
Unmanned Aircraft Systems (ICUAS). IEEE, 2016, pp. 540–549.

[15] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in International Workshop on Hybrid Systems: Computation and Con-
trol. Springer, 2005, pp. 291–305.

[16] N. Ramdani, N. Meslem, and Y. Candau, “Computing reachable
sets for uncertain nonlinear monotone systems,” Nonlinear Analysis:
Hybrid Systems, vol. 4, no. 2, pp. 263–278, 2010.

[17] X. Chen, E. Abraham, and S. Sankaranarayanan, “Taylor model
flowpipe construction for non-linear hybrid systems,” in 2012 IEEE
33rd Real-Time Systems Symposium. IEEE, 2012, pp. 183–192.

[18] S. Kong, S. Gao, W. Chen, and E. Clarke, “dreach: δ -reachability anal-
ysis for hybrid systems,” in International Conference on TOOLS and
Algorithms for the Construction and Analysis of Systems. Springer,
2015, pp. 200–205.

[19] R. E. Moore, Methods and applications of interval analysis. SIAM,
1979.

[20] “Video of the simulation.” https://www.youtube.com/watch?v=
MdOKY-ykCSw.

[21] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. IEEE ICRA, 2011, pp. 2520–2525.

[22] D. Zhou and M. Schwager, “Vector field following for quadrotors using
differential flatness,” Proc. IEEE ICRA, pp. 6567–6572, 2014.

[23] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous robots, vol. 34, no. 3, pp. 189–206,
2013.

[24] H. Samet, “Neighbor finding in images represented by octrees,” Com-
puter Vision, Graphics and Image Processing, vol. 46, no. 3, pp. 367–
386, 1989.

10276

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 23:52:17 UTC from IEEE Xplore. Restrictions apply.

