
Safety-Critical Manipulation for Collision-Free Food Preparation

Andrew Singletary, William Guffey, Tamas G. Molnar, Ryan Sinnet, and Aaron D. Ames

Abstract— Recent advances allow for the automation of food
preparation in high-throughput environments, yet the successful
deployment of these robots requires the planning and execution
of quick, robust, and ultimately collision-free behaviors. In this
work, we showcase a novel framework for modifying previously
generated trajectories of robotic manipulators in highly detailed
and dynamic collision environments using Control Barrier
Functions (CBFs). This method dynamically re-plans previously
validated behaviors in the presence of changing environments—
and does so in a computationally efficient manner. Moreover, the
approach provides rigorous safety guarantees of the resulting
trajectories, factoring in the true underlying dynamics of the
manipulator. This methodology is extensively validated on a full-
scale robotic manipulator in a real-world cooking environment,
and has resulted in substantial improvements in computation
time and robustness over re-planning.

I. INTRODUCTION

Robotics and automation have great potential to transform
the food industry. In the domain of autonomous cooking,
robotic manipulators are used to pick up, deep fry, and
dispense the food in the dynamic environment of the kitchen.
This requires motion plans that are constantly computed,
hundreds or thousands of times per day, subject to different
environmental factors and initial conditions of the robots.
Due to the extremely complex collision environments and
non-trivial kinematics, highly non-linear planning algorithms
such as TrajOpt [1], OMPL [2], and CHOMP [3] are used
to plan joint trajectories offline, which the manipulator then
executes. The vast majority of plans, however, deviates only
slightly from previously computed trajectories: food baskets
may shift locations and deform slightly, workers may push
the equipment, or the robot may have slightly different joint
configuration initially. In these situations, rather than re-
planning a trajectory with the existing motion planner, we
propose a safety filtering method that produces collision-free
trajectories from existing reference trajectories in minimal
computation time, and with formal safety guarantees.

Minimally modifying existing trajectories is possible by
optimization solvers that have warm-start or hot-start options
for resolving problems with slightly modified initial condi-
tions. In [4], the authors introduced a method for building
a dataset of motion plans that were used to warm-start the
trajectory generator to boost the success-rate of trajectories.
Similarly, in [5], the authors proposed a dataset of expert
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Fig. 1: Miso Robotics ”Flippy2” robot frying food using our
proposed safety-critical framework for food preparation.

trajectories to warm-start a Sequential Convex Program-
ming (SCP) problem for solving locally optimal trajectories
rapidly. In [6], the authors used incremental solvers to update
trajectories via Gaussian processes and factor graphs.

More generally, local planners have been used for decades
to modify rough, global trajectories under new collision
constraints [7] or dynamic environments [8]. While many of
these works could certainly be modified to tackle the robotic
cooking problem, we believe that our approach’s balance of
simplicity, computational speed, and formality of resulting
safety guarantees makes it the best fit for the problem at
hand. Moreover, this algorithm can be run in real-time as a
feedback controller with dynamically updating environments,
offering a great deal of flexibility in implementation.

Our approach relies on control barrier functions (CBFs)
[9], that have been proven to provide an effective means of
enforcing safety on a wide variety of robotic systems [10],
including robotic manipulators [11]–[13]. In prior works,
CBFs were utilized as safety filters on desired velocity
commands, and obstacle representations were simplified. In
this work, safe velocity commands synthesized based on
kinematics are tracked by low-level controllers, and a formal
proof is provided that this method preserves safety for the
full dynamics of the robot. The formal connection between
safe kinematics and dynamics leads to a theoretically justified
framework for filtering pre-computed trajectories. Further-
more, our work utilizes significantly more complex obsta-
cle representations and environments than previous works
involving CBFs, which facilitates practical implementation.

The primary contribution of this work is a rigorously
tested CBF-based filtering strategy that modifies previously
generated trajectories to account for new collision constraints
in a provably safe manner. This strategy often eliminates the
need for re-planning in updated environments, saving com-
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putation time and providing robust safety guarantees for the
resulting trajectory. We formally prove that these trajectories
are not only valid for the kinematic model of the manipulator,
but also for the underlying full-order dynamical system.
The proposed novel control algorithm is implemented in the
MoveIt framework [14], and applied to full-scale autonomous
food-frying in collaboration with Miso Robotics. The speed
and efficacy of this method are extensively explored in real-
world cooking environments, and the method has been shown
to dramatically increase planning speed and reliability.

The layout of this paper is as follows. In Section II, CBFs
are used to enforce safety on both the kinematic model of the
manipulator and the full dynamics. Section III formulates dis-
tance functions in complex, real-world environments, which
are used in the context of CBFs for collision avoidance.
Section IV outlines the software implementation of the
proposed algorithm and the simulation environment. Lastly,
Section V shows the details and results of the extensive, real-
world hardware tests in the application of robotic cooking.

II. CONTROL BARRIER FUNCTIONS FOR SAFETY

A. Background: Control Barrier Functions

Consider a nonlinear system in control-affine form:

ẋ = f (x)+g(x)u, (1)

with state x ∈ Rk and control input u ∈ U ⊂ Rm to be
chosen from an admissible input set U ⊆Rm. The functions
f : Rk→Rk and g : Rk→Rk×m describe the dynamics of the
system and are assumed to be Lipschitz continuous. Given a
Lipschitz continuous control law k : Rk → Rm, u = k(x) we
obtain the closed-loop dynamics

ẋ = fcl(x) := f (x)+g(x)k(x). (2)

For the initial condition x(t0) = x0 ∈ Rk, this system has a
unique solution x(t) which we assume to exist for all t ≥ t0.

Consider a safe subset of the state-space S ⊂ Rk which
may represent, for example, the collision-free states of a
manipulator. To guarantee safety, we must ensure that the
state of the closed-loop system is kept within in S for all
time. This is formalized through the notion of set invariance.

Definition 1. The set S is forward invariant if the solution
x(t) of system (2) satisfies x(t) ∈ S, ∀t ≥ t0.

Control barrier functions are a common tool to synthesize
controllers that enforce forward invariance for a given set S.

Definition 2 ([9]). Let S⊂Rk be defined as the 0-superlevel
set of a continuously differentiable function h : Rk→ R:

S = {x ∈ Rk : h(x)≥ 0}. (3)

Function h is a control barrier function (CBF) for (1) on S
if there exists an extended class K∞ function1 α such that

1α : R→ R is an extended class K∞ function if it is continuous, strictly
monotonically increasing, and satisfies α(0) = 0, limr→∞ α(r) = ∞ and
limr→−∞ α(r) =−∞.

for all x ∈ S:

sup
u∈U

[
∂h
∂x

f (x)+
∂h
∂x

g(x)u
]

︸ ︷︷ ︸
ḣ(x,u)

≥−α(h(x)), (4)

where ḣ(x,u) is the derivative of h(x) along system (1).

This definition yields the following key result for CBFs.

Theorem 1 ([9]). If h is a CBF for (1), then any locally Lip-
schitz continuous controller k : Rk→Rm, u = k(x) satisfying

ḣ(x,k(x))≥−α(h(x))

renders the set S in (3) forward invariant for the resulting
closed loop system (2).

This condition can be incorporated into a quadratic pro-
gram (QP) to synthesize pointwise optimal and safe con-
trollers, by minimally modifying a desired but not necessarily
safe input udes(x, t) ∈U to a safe input u∗(x, t) ∈U :

u∗(x, t) = argmin
u∈U

‖u−udes(x, t)‖2
2

s.t. ḣ(x,u)≥−α(h(x)).
(5)

This QP can be solved in real-time for nonlinear systems.

B. Application to Robotic Manipulators

Now let us use CBFs for controlling robotic manipulators
whose state x = (q, q̇) consists of the configuration q ∈ Rn

and the joint velocities q̇ ∈ Rn. For safe obstacle avoidance
with the manipulator, we consider the safe set to be defined
over the configuration space:

S = {q ∈ Rn : h(q)≥ 0}, (6)

where h : Rn → R is continuously differentiable. That is, h
is assumed to be independent of q̇. The specific choice of h
will be given in Section III-B.

First, we consider the kinematics of robotic manipulators
with state q — later it will be formally justified how this
yields safety guarantees on the full-order dynamics with state
(q, q̇). In particular, we consider the system:

q̇ = v, (7)

wherein we assume direct control over the joint velocities
via the commanded velocity v ∈ Rn. We design a velocity
v by considering it as input to system (7) and guaranteeing
safety by CBFs. In Section II-C, it will be verified that safety
guarantees extend to the full dynamics when the commanded
velocity is tracked by a low-level controller.

Because each joint’s velocity is directly controlled accord-
ing to (7), we can simplify the QP shown in (5) to:

v∗(q, t) = argmin
v∈Rn

‖v− vdes(q, t)‖2
2

s.t.
∂h
∂q

v≥−αh(q),
(8)

where a desired velocity vdes(q, t) ∈ Rn is modified to a
safe velocity v∗(q, t) ∈ Rn. Note that we chose the extended
class K∞ function to be linear with constant gradient α > 0.



Fig. 2: Manipulator trajectory resulting from the control
barrier function detailed in Example 1. The tool is marked
in yellow, whereas the obstacle is shown in green.

Example 1. Consider a 6-degrees-of-freedom manipulator
(n = 6) with a spherical tool attachment of radius r1. The
manipulator is intended to track a desired joint velocity
vdes(q, t) and we wish to avoid a spherical region centered at
O∈R3 of radius r2. The CBF can be written as the distance
from the spherical tool to the sphere in the surroundings:

h(q) = ‖F(q)−O‖2− (r1 + r2) (9)

=
√

(Fx−Ox)2 +(Fy−Oy)2 +(Fz−Oz)2− (r1 + r2)

where F : R6→R3 are the forward kinematics that give the
position of the end-effector in space, (Fx,Fy,Fz) = F(q). The
gradient of the CBF can be computed as:

∂h
∂q

=
∂h
∂F

∂F
∂q

=
1

‖F(q)−O‖2

Fx−Ox
Fy−Oy
Fz−Oz

T

J(q), (10)

where J : R6→ R3×R6, J(q) = ∂F
∂q is the top three rows of

the manipulator Jacobian. By enforcing the CBF-QP (8), we
obtain the path illustrated in Figure 2.

C. Safety Guarantees: from Kinematics to Dynamics

We now establish the first theoretic contribution of the
paper that will serve to formally justify the subsequent
results. In particular, we leverage the kinematic model of
the manipulator to guarantee safe behavior on the full-
order dynamics. We establish that tracking the safe velocity
obtained from the QP (8) results in safety under reasonable
conditions on the tracking controller.

Specifically, consider the full-order dynamics associated
with a robotic manipulator [15]:

D(q)q̇+C(q, q̇)q̇+G(q) = Bu, (11)

with q, q̇∈Rn, D(q)∈Rn×n the inertia matrix, C(q, q̇)∈Rn×n

the Coriolis matrix, and G(q) ∈ Rn the gravity vector. Here
we assume full actuation: the actuation matrix B ∈ Rn×n is

invertible and u ∈ Rn. Associated with these dynamics is a
control system of the form (1) with x = (q, q̇) (hence k = 2n).

Motivated by the approach in [16], we assume the ex-
istence of a “good” low-level velocity tracking controller
on the manipulator (as is common on industrial robots).
Concretely, for a velocity command v∗(q, t) consider the
corresponding error in tracking this velocity:

ė = q̇− v∗, (12)

and assume exponentially stable tracking.

Assumption 1. There exist a low-level controller u = k(x, t)
for the control system (1) obtained from (11) such that

‖ė(t)‖2 ≤Me−λ t‖ė0‖2 (13)

holds for some M,λ > 0 along the solution x(t) of the closed-
loop system (2) with q(t0) = q0, q̇(t0) = q̇0 and ė(t0) = ė0.

Under this assumption, we have the first theoretic result
of the paper which we state in general terms before applying
it to the case of avoiding collisions in Section III-D.

Theorem 2. Consider the full-order dynamics of a robot
manipulator (11) expressed as the control system (1), and the
safe set S in (6). Assume that h has bounded gradient, i.e.,
there exists Ch > 0 s.t.

∥∥∥ ∂h
∂q

∥∥∥
2
≤Ch for all q ∈ S. Let v∗(q, t)

be the safe velocity given by the QP (8), with corresponding
error in (12). If Assumption 1 holds with λ > α , safety is
achieved for the full-order dynamics (11) in that:

(q0, ė0) ∈ SM ⇒ q(t) ∈ S, ∀t ≥ t0, (14)

where:

SM =

{
(q, ė) ∈ R2n : h(q)− ChM

λ −α
‖ė‖2 ≥ 0

}
. (15)

Proof. First, we lower-bound ḣ(q, q̇) as follows:

ḣ(q, q̇) =
∂h
∂q

v∗+
∂h
∂q

ė

≥−αh(q)−
∥∥∥∥∂h

∂q

∥∥∥∥
2
‖ė‖2

≥−αh(q)−ChM‖ė0‖2e−λ t ,

(16)

where we used (i) the definition (12) of the tracking error;
(ii) the constraint on the safe velocity in (8) and the Cauchy-
Schwartz inequality; and (iii) the upper bound Ch on ‖ ∂h

∂q‖2
and the upper bound (13) on the tracking error. Then,
consider the following continuous function y : R→ R:

y(t) =
(

h(q0)−
ChM‖ė0‖2

λ −α

)
e−αt +

ChM‖ė0‖2
λ −α

e−λ t , (17)

which satisfies:

ẏ(t) =−αy(t)−ChM‖ė0‖2e−λ t

y(t0) = h(q0).
(18)

For (q0, ė0) ∈ SM , we have y(t)≥ 0, ∀t ≥ t0, and by the
comparison lemma we get:

h(q(t))≥ y(t)≥ 0, ∀t ≥ t0, (19)

that implies q(t) ∈ S, ∀t ≥ t0. This completes the proof.



III. DISTANCE FUNCTIONS AND SAFETY FILTERING

A. Collisions with Environment

In order to prevent collisions with the environment, we
must ensure that any point on the robot does not come into
contact with any point in the environment. However, unlike
the simple example before, we cannot rely on the robot and
environment being represented by simple spheres.

Let us denote the set of all points on the robot as A ⊂
R3, and the set of all points in the collision environment as
B⊂R3. To guarantee safety, we require that A∩B = /0, thus
distance(A,B)> 0. More formally, distance is defined as:

distance(A,B) = inf
pA∈A
pB∈B

‖pA− pB‖2 , (20)

which can be computed in R3 using the GJK algorithm [17].
This notion gives a nonnegative distance, which could be

used as CBF. However, it is advantageous to define a CBF
that is negative in the event of collision, since CBFs may
also ensure that the boundary of the set S is re-approached
if h(x)< 0 [9]. In collision, penetration is defined as:

penetration(A,B) = inf
pA∈A
pB∈B

‖pA− pB‖2 , (21)

where B is the complement of B, or the set of points outside
the collision scene. Penetration is often computed using the
EPA algorithm [18].

These two functions can be combined to form the notion
of signed distance. Signed distance is typically written as

sd(A,B) = distance(A,B)−penetration(A,B). (22)

When the points pA and pB of the robot and the environment
are given in local coordinates, the following expression from
[1] can be utilized to compute the signed distance:

sdAB(q) = max
ñ∈R3

‖ñ‖2=1

min
pA∈A
pB∈B

ñ ·
(
FW

A (q)pA−FW
B pB

)
, (23)

where FW
A (q)∈R3×3 gives the pose of the robot in the world

frame that depends on the configuration q, and FW
B ∈ R3×3

gives the pose of the collision environment, i.e., FW
A (q)pA

and FW
B pB indicate points in the world frame.

B. Controller Synthesis with Control Barrier Functions

Given the signed distance, we propose the CBF candidate:

h(q) = sdAB(q), (24)

which defines the corresponding safe set of the system:

S = {q ∈ Rn : h(q) = sdAB(q)≥ 0}. (25)

We remark that based on (23) h can be written as:

h(q) = n̂(q)>
(
FW

A (q)p̂A(q)−FW
B p̂B(q)

)
. (26)

Here n̂(q) and p̂A(q), p̂B(q) denote the direction and points
that maximize and minimize the expression in (23), respec-
tively, which depend on the configuration q.

It is important to note that in Euclidean space, signed
distance, h, is differentiable almost everywhere, and satisfies

∥∥∥ ∂h
∂ pA

∥∥∥
2
= 1 [19]. There exists, however, a set of measure zero

where ∂h
∂q is discontinuous, since functions n̂ and p̂A, p̂B are

nonsmooth due to the max and min operators in (23). Since
the above framework requires continuously differentiable h,
we take special care in applying the theory, and we handle
nonsmoothness under the following construction.

First, we express the gradient of h as follows:

∂h
∂q

= n̂(q)>JA(q)+δ (q), (27)

where JA(q) =
∂FW

A
∂q p̂A(q) and δ (q) is the remainder term

associated with the derivatives of n̂, p̂A, and p̂B. Importantly,
note that n̂(q)>JA(q) is continuous, while δ (q) is discontin-
uous on a set of measure zero. The term n̂(q)>JA(q) can be
interpreted as a continuous approximation of ∂h

∂q , while the
approximation error δ (q) acts as disturbance. The size of the
disturbance is characterized by its essential supremum2:

‖δ‖∞ := esssup
t≥t0

‖δ (q(t))‖2.

The points where h is not differentiable and δ is discontin-
uous occur on a set of measure zero, and therefore do not
impact the essential supremum.

Now we incorporate the continuous approximation
n̂(q)>JA(q) in (27) into the control design. The following
result demonstrates that this approximation is sufficient to
maintain safety if the disturbance δ (q) is properly accounted
for (in an input-to-state safety (ISSf) context [20], [21]).

Proposition 1. Consider the kinematic model of a robotic
manipulator (7). Then, the controller expressed as the QP:

v∗(q, t) = argmin
v∈Rn

‖v− vdes(q, t)‖2
2 (28)

s.t. n̂(q)>JA(q)v≥−αh(q)+2Jmaxq̇max,

with q̇max = ‖q̇‖∞ and Jmax = maxq∈Rn ‖JA(q)‖2, renders the
set S in (25) forward invariant for the resulting closed-loop
system. That is, the controller (28) keeps system (7) safe.

As such, collision-free behavior is enforced for the kine-
matic model of the manipulator, if the disturbance, i.e., the
approximation error in (27), is accounted for in the controller.
This is achieved by the last term in the constraint of (28).

Proof. First, we bound the essential supremum ‖δ‖∞ of the
disturbance. Recall that the points where h is not differen-
tiable are on a set of measure zero and do not impact the
essential supremum, thus we construct the bound on ‖δ‖∞ by
picking generic points where the h is differentiable. For an
arbitrary point on the robot pA ∈ A where h is differentiable:∥∥∥∥∂h

∂q

∥∥∥∥
2
=

∥∥∥∥ ∂h
∂ pA

∂ pA

∂q

∥∥∥∥
2

≤
∥∥∥∥ ∂h

∂ pA

∥∥∥∥
2

∥∥∥∥∂ pA

∂q

∥∥∥∥
2

≤ 1 · Jmax.

(29)

2The function δ is essentially bounded if ‖δ (t)‖2 is bounded by a finite
number for almost all t ≥ t0 (i.e., ‖δ (t)‖2 is bounded except on a set of
measure zero). The quantity ‖δ‖

∞
is then defined as the least such bound.



This leads to the bound:

‖δ‖
∞
=

∥∥∥∥∂h
∂q
− n̂(q)>JA(q)

∥∥∥∥
∞

≤
∥∥∥∥∂h

∂q
− n̂(q)>JA(q)

∥∥∥∥
2

≤
∥∥∥∥∂h

∂q

∥∥∥∥
2
+
∥∥∥n̂(q)>JA(q)

∥∥∥
2

≤ Jmax +‖JA(q)‖2

≤ 2Jmax.

(30)

Then, we differentiate the CBF h in (24) and use (27):

ḣ(q, q̇) =
∂h
∂q

q̇ = n̂(q)>JA(q)q̇+δ (q)q̇

≥ n̂(q)>JA(q)q̇−‖δ‖∞q̇max.

(31)

Substituting q̇ with the solution v∗(q, t) to (28) and incorpo-
rating the bound on ‖δ‖∞, the result is:

ḣ(q,v∗(q, t))≥ n̂(q)>JA(q)v∗(q, t)−‖δ‖∞q̇max

≥−αh(q)+2Jmaxq̇max−‖δ‖∞q̇max

≥−αh(q).

(32)

Thus, the set S is forward invariant based on Theorem 1.

C. Self-collisions

Self-collisions are defined as collisions between any two
links of the robot that are not explicitly allowed to collide.
For these types of collisions, we still use the signed distance
function, but now FW

B also depends on the configuration q:

sdAB(q) = max
ñ∈R3

‖ñ‖2=1

min
pA∈A
pB∈B

ñ ·
(
FW

A (q)pA−FW
B (q)pB

)
. (33)

Thus, the gradient of h(q) = sdAB(q) becomes:

∂h
∂q

= n̂(q)> (JA(q)− JB(q))+δ (q), (34)

with JA(q) =
∂FW

A
∂q p̂A(q) and JB(q) =

∂FW
B

∂q p̂B(q).
Proposition 1 can again be applied to self-collisions, with

slight modifications. The analysis results in the QP:

v∗(q, t) = argmin
v∈Rn

‖v− vdes(x, t)‖2
2 (35)

s.t. n̂(q)> (JA(q)− JB(q))v≥−αh(q)+4Jmaxq̇max.

D. Safety Guarantees for the Full-Order Dynamics

The safety guarantees of Proposition 1 are valid for the
kinematic model (7). However, like in Theorem 2, the
controllers (28) and (35) lead to collision-free motion also on
the full-order dynamics—assuming good velocity tracking.

Theorem 3. Consider the full-order dynamics of a robot
manipulator (11) expressed as the control system (1), and the
safe set S in (25) associated with the signed distance sdAB(q)
between the robot and the environment in (23). Let v∗(q, t)
be the safe velocity given by the QP (28), with corresponding
error in (12). If Assumption 1 holds with λ > α , safety is
achieved for the full-order dynamics (11) in that:

(q0, ė0) ∈ SM ⇒ q(t) ∈ S, ∀t ≥ t0, (36)

where:

SM =

{
(q, ė) ∈ R2n : sdAB(q)−

JmaxM
λ −α

‖ė‖2 ≥ 0
}
. (37)

Note that the same safety guarantees can be stated for
self-collision avoidance with the QP (35).

Proof. The proof follows the same steps as in the Proof
of Theorem 2 with the substitution Ch = Jmax, which is
justified by

∥∥∥ ∂h
∂q

∥∥∥
2
≤ Jmax based on (29). Furthermore, note

that ∂h
∂q v∗ ≥−αh(q) still holds due to (32).

IV. SOFTWARE IMPLEMENTATION AND SIMULATION

A. CBF Implementation on Precomputed Trajectories

Assuming the knowledge of a reference trajectory, we
now detail the trajectory safety filter algorithm. The most
straightforward implementation of the QPs (28) and (35) is
to run them in real-time paired with a desired joint velocity
controller, which tracks the waypoints of the reference. This
can be achieved with a P controller to the next waypoint i:

vdes(q, t) = KP(qi
des−q). (38)

For the best results, the error on joint positions should
be heavily saturated to avoid large differences in desired
velocities at short and long distances. The tracked waypoint
is iterated forwards either when the robot is sufficiently close(∥∥qi

des−q
∥∥

2 < ε
)
, or when the robot gets stuck.

Due to the large time delay that many industrial manipu-
lators have, it is often desired to instead send precomputed
time-stamped trajectories, rather than attempting to track
a trajectory online with feedback. The basic algorithm for
generating these safe trajectories, given a cache of previously
computed reference trajectories, is detailed in Algorithm 1.

There are three fields of interest in the cached trajecto-
ries: the desired behavior B, the manipulator’s trajectory T ,
and the collision environment used by the original planner,
referred to as the planning scene P. While only the joint
trajectory is required to generate the modified, safe trajectory,
the inclusion of the original planning scene allows for more
information when choosing the closest trajectory to track.

The algorithm first assesses the suitability of previously
computed trajectories in the cache. There are two major
considerations: the difference in initial conditions and the
similarity of the planning scene. The suitability of the ith

member of the cache Ci is evaluated by the function:

T i = f (Ci
P,C

i
X0
,P,q) = δ

i
q +δ

i
P, (39)

where

δ
i
q =

∥∥Ci
X0
−q
∥∥

2 (40)

δ
i
P =

∥∥Ci
P−P

∥∥= ∑
o∈O

∥∥Ci
Po −Po

∥∥ (41)

assess the differences in the initial conditions of the robot and
the collision objects o ∈ O making up the planning scene.

There are three threshold values (T1, T2 and T3) for this
suitability metric. If T i < T1, then the search stops, as the
trajectory in the cache is so close that it is not worth



Algorithm 1 Trajectory generation in modified collision
environments with safety filters.

Require: C, the cache that contains behaviors Ci
B, planning

scenes Ci
P, and trajectories Ci

X
Input

B Desired behavior
P Planning Scene
q Robot State

Output
X Trajectory

for each Ci s.t. B ==Ci
B do . Iterate through cache

T i = f (Ci
P,C

i
X0
,P,q) . Compute suitability metric

if T i < T1 then . Reference is extremely similar
X ← CBF(Ci

X ,P,q)
return

end if
end for
[Tmin, idx] ←min(T i) . Find best reference
if Tmin < T2 then . Close match

X ← CBF(Cidx
X ,P,q) . Safety filter

return
else if Tmin < T3 then . Suitable match

X ← CBF(Cidx
X ,P,q)

C← X
return

else . Best reference is very dissimilar
X ← Re-plan from scratch
C← X . X gets added to cache

end if

searching, and the CBF filter is applied. After searching
through all cache members, if T i < T2, then the filter is
applied, but the trajectory is not added to the cache to prevent
it from growing unnecessarily large. If T2 < T i < T3, then the
filter is applied and the resulting trajectory is added to the
cache. Finally, if T i > T3, then the original motion planning
algorithm is used, and the result is added to the cache.

To obtain the joint trajectory X via the CBF, we simply
utilize a trajectory tracking controller like (38) along with the
CBF-QP, and integrate its solution throughout the behavior.

B. Software Implementation and Simulation

Figure 3 shows the simulated cooking environment. The
robot and obstacle representations are a series of meshes
described by URDF and SRDF files. The position and orien-
tation of objects are updated before each planning attempt,
and collision objects in the environment are assumed to be
stationary unless directly interacted with by the manipulator,
such as the baskets being grabbed and moved.

To implement the CBF filter, we require three values
to be computed: the signed distance to the obstacles and
other links sd(q), the normal vectors corresponding to these
points n̂(q), and the manipulator Jacobian at these points
J(q). The MoveIt framework [14], an open-source robotics
software package for motion planning, is able to compute all
three of these values. Specifically, the distanceRobot()
and distanceSelf() functions of the CollisionEnv

Fig. 3: The simulation environment, which shows the colli-
sion objects and their representations as mesh files. The same
mesh representations are used on the hardware system.

class provide the signed distances and normal vectors
needed for environmental and self-collisions. Moreover, the
getJacobian() function in the RobotState class re-
turns the manipulator Jacobian. Thus, no other external
libraries are required to implement this algorithm. Once these
three values are computed, the OSQP quadratic program
solver [22] is used to calculate the velocity commands subject
to the CBF condition, and integration is done manually.

Before hardware implementation, the algorithm was tested
in simulation. The resulting behaviors are described in the
next section, and the simulation results are shown along with
the hardware trajectories in Figure 4.

V. HARDWARE RESULTS

A. Experimental testing environment

We apply the approach described in this paper to one of the
Miso Robotics robotic cooking environments. Specifically,
we utilize a FANUC LR Mate 200iD/7LC robotic manipula-
tor wrapped in a sleeve, and we send joint trajectories from
an Intel i9-9900KF running ROS.

The cooking environment used in the testing is fully mod-
eled using high-quality meshes used for collision checking.
There are 36 collision objects in total, each represented by
tens to hundreds of mesh triangles. The primary collision
objects of concern are the six baskets, three industrial fryers,
the hood vent over the fryers, and the glass pane separating
the manipulator from the human workers. Of these objects,
the baskets and fryers are the most commonly displaced.

As shown in the figures, the configuration space of the
manipulator is very densely crowded with obstacles. To
complete a behavior, it is common to have less than a
few centimeters of clearance between the robot and the
surrounding environment. For this reason, planning methods
must be minimally conservative, and there is no room for
any collision buffer.



(a) fryer to hanger with adjacent basket in fryer.

(b) hanger to fryer with adjacent basket hanging.

Fig. 4: Two examples behaviors implemented on the Flippy2 robot. See https://youtu.be/nmkbya8XBmw for video.
The large spikes in signed distance h(q) come from enabling and disabling collision objects when required for interaction,
like the basket when gripping and the fryer when hanging. At the maximum value of h(q), the robot is only 11 cm away
from the frame around it during these behaviors.

https://youtu.be/nmkbya8XBmw


For the purpose of the experiments, a minimal cache was
utilized to highlight the role of CBFs in re-planning around
obstacles. In a commercial setting, with a more populated
cache, the CBF would have many more prior trajectories
to choose from, meaning that the path modifications would
be much smaller in magnitude. In practice, we find that the
cache size saturates at around 200 stored behaviors.

B. Hardware results

We test our framework’s ability to safely re-plan on
the two most volatile behaviors: fryer to hanger and
hanger to fryer, described below.
Fryer to hanger. The fryer to hanger behavior moves
a basket from the dipped state to the hanging state. The
manipulator picks up a basket that has finished cooking and
hangs it, allowing the oil to drip off the basket before serving
food to customers.
Hanger to Fryer. The hanger to fryer behavior is the
reverse of fryer to hanger, transitioning a basket from
the hanging state to the frying state.

Each behavior is tested in two primary configurations: one
where the adjacent basket is submerged, and one where it’s
hanging. For the purpose of this paper, each of the four
testing configurations were run 25 times, each with different
cached trajectories and planning environments, for 100 total
executions. The testing methodology was simple: for each
setup, we first run the CBF on the best matching reference
trajectory in the limited cache, and then we re-plan using
TrajOpt for comparison purposes.

The CBF was able to produce a successful, collision-free
trajectory in all 100 cases, even with the artificially limited
cache size. The average computation time per CBF call was 2
ms, and the average computation time for the entire behavior
was 223 ms. This is a significant improvement compared
to TrajOpt’s average computation time of 5923. Note that
the CBF’s trajectory is updated every 10 ms compared to
TrajOpt’s 64 ms, meaning no additional local planner needs
to be utilized. Two example trajectories from the CBF are
visualized in Figure 4, and the value of h(q) throughout the
motion is included.

VI. CONCLUSION

In this work, we showcased control barrier functions for
utilization in complex, real-world collision environments in
the case of robotic cooking applications. First, we demon-
strated how CBFs applied to the kinematics of robotic
manipulators guarantee safety for the full-order dynamics.
Then, we described the construction of these CBFs for
very complex collision obstacle representations. We proposed
an algorithm for filtering reference trajectories via CBFs
to achieve safety, and we demonstrated the capabilities of
this method in software and on hardware in the real-world
application of frying foods.
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