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Abstract
Modern nonlinear control theory seeks to endow systems with properties of stability and safety,
and have been deployed successfully in multiple domains. Despite this success, model uncertainty
remains a significant challenge in synthesizing safe controllers, leading to degradation in the prop-
erties provided by the controllers. This paper develops a machine learning framework utilizing
Control Barrier Functions (CBFs) to reduce model uncertainty as it impact the safe behavior of a
system. This approach iteratively collects data and updates a controller, ultimately achieving safe
behavior. We validate this method in simulation and experimentally on a Segway platform.
Keywords: feedback control, barrier functions, supervised learning, safety, robotics

1. Introduction

Safety is of significant importance in many modern control applications, and as the complexity
of systems increases, it is necessary to rigorously encode safety properties during the controller
design process. Autonomous driving, industrial robotics, and aerospace vehicles are examples of
rapidly growing applications where safe control synthesis is critical. In practice, the models used
to design such controllers are imperfect, with model uncertainty arising due to parametric error and
unmodeled dynamics. This uncertainty can lead to unsafe or dangerous behavior, and thus it is
critical to quantify safety in the face of uncertainty.

In this work we consider a data-driven, machine learning approach to reduce model uncertainty
and improve the safe behavior of a system. Learning-based approaches have already shown great
promise for controlling systems with uncertain models (Schaal and Atkeson (2010); Kober et al.
(2013); Khansari-Zadeh and Billard (2014); Cheng et al. (2019); Taylor et al. (2019b); Shi et al.
(2019)). We look to achieve safety defined in terms of set invariance (Blanchini (1999); Ames et al.
(2019)), which is an area of active research at the intersection of machine learning and control theory
(Berkenkamp et al. (2016); Fisac et al. (2018)). Additional details on related work are provided in
the extended version of this paper (Taylor et al. (2019c)).

We will leverage Control Barrier Functions (CBFs) for synthesizing safe controllers (Ames et al.
(2014, 2017)) that achieve set invariance. CBFs have become increasingly popular for enforcing
safety (Nguyen and Sreenath (2016); Wang et al. (2018)), but their safety guarantees require an
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accurate model of the system, and thus model uncertainty can lead to degradation of these guarantees
(Kolathaya and Ames (2018)). Robust CBF formulations can ensure safety in the face of model
uncertainty (Gurriet et al. (2018); Xu et al. (2015)), but may be overly restrictive of the system’s
behavior. Adaptive CBF methods can provide safety with arbitrarily large parametric error (Taylor
and Ames (2019)), but only over a restricted class of model uncertainty.

One challenge in utilizing learning for improving controllers is collecting training data that
accurately reflects the desired learning environment. Exhaustive data collection suffers from the
curse of dimensionality and scales poorly with the size of the system’s state and input. Additionally,
the pre-collection of data upfront can lead to bad performance as the learning-augmented controller
may enter new states not present in the pre-collected training data. We will utilize episodic learning
approaches such as Dataset Aggregation (DAgger) (Ross et al. (2010)) to address these challenges
efficiently, and lead to an iteratively improved controller. Furthermore, we build upon recent work
utilizing learning in the context of Control Lyapunov Functions (CLFs) (Taylor et al. (2019b)) to
construct an approach for learning model uncertainty. Unlike this preceding work, our method learns
model uncertainty impacting safety rather than stability, and provides experimental demonstration.

Our contribution: The contribution of this work is a novel approach for learning model un-
certainty directly as it impacts the evolution of a Control Barrier Function and synthesizing a new
controller for enforcing safety. Previous work has focused on learning an invariant set under a given
controller, or learning unmodeled dynamics in the full-order state dynamics and modifying a con-
troller. This approach learns the effect of unmodeled dynamics and parametric error on the system’s
behavior episodically, and integrates with optimization based methods for enforcing safety from
nonlinear control theory. We demonstrate the functionality of this learning approach for a Segway
system both in simulation and, for the first time, experimentally on a hardware platform.

Our paper is organized as follows. Section 2 provides a review of Control Barrier Functions and
safety-critical control. In Section 3 we state assumptions on our model uncertainty, and define our
learning approach for capturing the impact of this uncertainty on the CBF dynamics. Next, Section
4 details issues with standard supervised learning in a sequential prediction task, and provides an
episodic framework that utilizes our particular learning approach. Lastly, Section 5 provides both
simulation and experimental results on a Segway platform.

2. Control Barrier Functions

In this section we provide a review of Control Barrier Functions (CBFs) and how they can be
utilized to ensure the safety of a system. This will motivate a particular episodic learning approach
that achieves safety in the presence of uncertainty in modeled system dynamics.

Consider a dynamic system with state x ∈ Rn and control input u ∈ Rm. We assume that the
dynamics of the system are continuous in time and affine in the control input, such that:

ẋ = f(x) + g(x)u
u=k(x)−−−−−→ ẋ = fcl(x) = f(x) + g(x)k(x) (1)

where k : Rn → Rm is a locally Lipschitz continuous controller that yields closed-loop dynamics.
Here f : Rn → Rn, g : Rn → Rn×m are assumed to be locally Lipschitz continuous and, therefore,
fcl : Rn → Rn is locally Lipschitz continuous. Under this assumption, for any initial state x0 ∈ Rn,
there exists a time interval of existence, I(x0) = [0, τmax), such that there is a unique solution,
x : I(x0)→ Rn, satisfying (1) with x(0) = x0 (Perko (2013)).
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The notion of safety is formalized by specifying a safe set that the state of the system must
remain in to be considered safe. In particular, consider a set S ⊂ Rn defined as the 0-superlevel
set of a continuously differentiable function h : Rn → R, with 0 a regular value (h(x) = 0 =⇒
∂h
∂x(x) 6= 0), yielding:

S , {x ∈ Rn | h(x) ≥ 0}. (2)

We refer to S as the safe set, and note that ∂S , {x ∈ Rn | h(x) = 0} and int(S) , {x ∈
Rn | h(x) > 0}. This motivates the following definitions of forward invariance and safety:

Definition 1 (Invariance & Safety) A set S is forward invariant if for every x0 ∈ S, x(t) ∈ S for
all t ∈ I(x0). The system (1) is safe with respect to the set S if the set S is forward invariant.

This definition implies that a system remains safe under a particular control policy only if all solu-
tions to (1) that begin in the safe set remain in the safe set.

Control Barrier Functions serve as a synthesis tool for attaining the forward invariance, and
thus safety, of a set (Ames et al. (2014); Xu et al. (2015)). Before defining CBFs, we note that a
continuous function α : (−b, a)→ R is an extended classK function (α ∈ Ke) if α(0) = 0 and α is
strictly monotonically increasing. If a, b =∞ and limr→∞ α(r) =∞ and limr→−∞ α(r) = −∞,
thenα is said to be an extended classK∞ function (α ∈ K∞,e). This enables the following definition
of Control Barrier Functions:

Definition 2 (Control Barrier Function (CBF), Ames et al. (2017)) Let S ⊂ Rn be the 0-superlevel
set of a continuously differentiable function h : Rn → R with 0 a regular value. h is a Control Bar-
rier Function (CBF) for (1) on S if there exists α ∈ K∞,e such that for all x ∈ S:

sup
u∈Rm

ḣ(x,u) = sup
u∈Rm

[
∂h

∂x
(x) (f(x) + g(x)u)

]
> −α(h(x)). (3)

Given a CBF h for (1) and a corresponding α ∈ K∞,e, we can consider the point-wise set of all
control values that satisfy (3):

Kcbf(x) =

{
u ∈ Rm

∣∣∣∣ ∂h∂x(x) (f(x) + g(x)u) ≥ −α(h(x))
}
,

One of the main results of (Ames et al. (2014); Xu et al. (2015)) is that the existence of a CBF for
S implies the system (1) can be rendered safe with respect to S:

Theorem 1 Given a set S ⊂ Rn defined as the 0-superlevel set of a continuously differentiable
function h : Rn → R with 0 a regular value, if h is a CBF for (1) on S, then any Lipshitz continuous
controller k : Rn → Rm, such that k(x) ∈ Kcbf(x) for all x ∈ S, renders the system (1) safe with
respect to the set S.

This result motivates the construction of a point-wise optimal controller seeking to minimize
a cost associated with the choice of input. To this end, we consider the safety-critical control for-
mulation (Gurriet et al. (2018)) that seeks to filter a hand-designed but potentially unsafe Lipschitz
continuous controller, kd : Rn → Rm, to find the nearest safe action:

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (CBF-QP)

s.t.
∂h

∂x
(x) (f(x) + g(x)u) ≥ −α(h(x))
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The validity of h as a CBF ensures the feasibility of this optimization problem, and the resulting
controller is Lipschitz continuous (Morris et al. (2015); Jankovic (2018)). As the dynamics model
(1) appears in the constraint enforcing safety, the guarantees of safe control synthesis endowed by
this controller require strong assumptions on the accuracy of the dynamics model.

3. Uncertainty Models & Learning

This section provides structural assumptions on the model uncertainty present in our system, and
defines our dynamics learning problem in the context of safety. In practice, uncertainty in the
dynamics of the system exists due to parametric error and unmodeled dynamics, such that the func-
tions f and g are not precisely known. Rather, control synthesis is done with a nominal model that
estimates the true dynamics of the system:

̂̇x = f̂(x) + ĝ(x)u (4)

where f̂ : Rn → Rn and ĝ : Rn → Rn×m are Lipschitz continuous. By adding and subtracting this
expression to (1), we see that the system evolves under the differential equation given by:

ẋ = f̂(x) + ĝ(x)u+ f(x)− f̂(x)︸ ︷︷ ︸
b(x)

+(g(x)− ĝ(x))︸ ︷︷ ︸
A(x)

u (5)

where b : Rn → Rn and A : Rn → Rn×m are the unmodeled dynamics. This uncertainty in the
dynamics additionally manifests in the time derivative of CBFs designed for the system:

ḣ(x,u) =
∂h

∂x
(x)(f̂(x) + ĝ(x)u)︸ ︷︷ ︸̂̇

h(x,u)

+
∂h

∂x
(x)b(x)︸ ︷︷ ︸
b(x)

+
∂h

∂x
(x)A(x)︸ ︷︷ ︸
a(x)>

u (6)

where b : Rn → R and a : Rn → Rm. The presence of uncertainty in the CBF time derivative
makes it impossible to verify if a given control input satisfies the inequality in (3), and can lead to
unsafe behavior. One critical assumption we make on the uncertainty in the dynamics is as follows:

Assumption 1 If a function h is a valid CBF for the nominal model of the system (4), then it is a
valid CBF for the uncertain dynamic system (5). Mathematically this assumption appears as:

sup
u∈Rm

∂h

∂x
(x)
(
f̂(x) + ĝ(x)u

)
> −α(h(x)) =⇒ sup

u∈Rm

∂h

∂x
(x) (f(x) + g(x)u) > −α(h(x))

Intuitively this assumption requires that a set within the state space that can be kept safe for the
nominal model of the system can also be kept safe for the uncertain system. Technically this as-
sumption amounts to an assumption that the relative degree of h for the model is the same as the
relative degree of h for the true system. This assumption on the true system naturally follows if the
true system retains the same actuation capability as the model, with more technical details provided
in Sastry (1999). While this assumption may enable a robust CBF approach for certifying safety
Gurriet et al. (2018), this method may be overly conservative. Instead, we take a data-driven ap-
proach similar to (Taylor et al. (2019b)) to learn uncertainty as it appears in the time derivative of
the CBF, ḣ, given in (6).
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To motivate our learning framework, consider a simple approach for learning a and b via su-
pervised regression (Györfi et al. (2006)): an experiment is conducted using a nominal controller to
collect data and learn functions that approximate a and b via supervised regression. More concretely,
an experiment consists of sampling an initial state for the system from an initial state distribution
X0, and allowing the system to evolve for a finite time interval under a given state-feedback con-
troller (using a sample-hold implementation). This yields a discrete time state and input history,
allowing the computation of a discrete time history of the CBF h. This time history is numerically
differentiated to compute an approximate time history of the true value of the time derivative ḣ,
yielding a data-set of input-output pairs:

D = {((xi,ui), ḣi)}Ni=1 ⊆ (Rn × Rm)× R. (7)

Consider two nonlinear function classes Ha : Rn → Rm and Hb : Rn → R. For â ∈ Ha and
b̂ ∈ Hb, we define the estimator:̂̇S(x,u) = ̂̇h(x,u) + â(x)>u+ b̂(x) (8)

and let H be the class of all such estimators mapping Rn × Rm to R. Specifying a loss function
L : R × R → R, the supervised regression task is to find an estimator in H via empirical risk
minimization (ERM):

inf
â∈Ha

b̂∈Hb

1

N

N∑
i=1

L
(̂̇S(xi,ui), ḣi

)
(9)

This experimental framework can be utilized in both simulation (learning estimates of the CBF
dynamics when model information is withheld from the state-feedback controller), or directly on
hardware platforms (when a given model does not accurately describe the physical system).

4. Episodic Learning Framework

In this section we discuss the consequences of using conventional supervised learning in this con-
text, and formulate an episodic learning framework to overcome these consequences. A critical
assumption of supervised learning is independently and identically distributed (i.i.d) training data.
The data collected via the preceding experimental framework violates this assumption, as each data
point (state and input pair) depends on the value of preceding data points. One potential conse-
quence of violating this assumption when using standard supervising learning is error cascades (Le
et al. (2016)). To overcome the impacts of violating this assumption, we extend this experimental
protocol to an episodic learning framework.

In particular, this framework iteratively alternates between running experiments with an inter-
mediate controller (or roll-outs in reinforcement learning (Kober et al. (2013))) to collect data, and
using the newly collected data to synthesize a new controller. Thus learning a and b is integrated
with improving the safety of the system. The new controller can be synthesized similarly to the
safety-critical controller (CBF-QP), but utilizing the updated estimate of the CBF time derivative
given in (8):

k′(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (LCBF-QP)

s.t. ̂̇S(x,u) ≥ −α(h(x))
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This controller effectively finds the nearest control input to the hand-designed controller kd that
renders the system safe according to the estimator (8). Thus, the actual safety achieved by the
system degrades if there is error present in (8).

To mitigate this remaining error, we use the newly synthesized controller to improve our esti-
mator. One method for reducing this error is to run experiments and use conventional supervised
regression to update the estimator. As previously noted, conventional supervised regression faces
limitations with non-i.i.d data. These limitations can be overcome episodically by utilizing reduc-
tion techniques, whereby a sequential prediction problem is reduced to a sequence of supervised
learning problems (Ernst et al. (2005); Ross et al. (2011)). In each episode, data is generated us-
ing a different controller. The data set is aggregated with all previously collected data and a new
ERM problem (9) is solved over the full data set. Our approach draws inspiration from the DAgger
algorithm (Ross et al. (2010)), with a key difference: DAgger is a model-free policy learning algo-
rithm, which trains a policy directly with an optimal policy oracle. Our method does not receive
information on the optimal policy nor does it train a policy directly, but learns information about the
unmodeled dynamics impacting safety and indirectly determines a policy via (LCBF-QP).

Lastly, as the newly synthesized controller will expose the system to new regions of the state
space in which the estimator may not be accurate, the synthesized controller is blended with the
nominal controller using heuristically chosen weights,wj ∈ [0, 1], that reflect the trust in the learned
model. This effectively limits how quickly the system’s behavior can change. The episodic frame-
work is summarized in Algorithm 1.

Algorithm 1 Dataset Aggregation for Control Barrier Functions (DaCBarF)

input : CBF h, CBF derivative estimate ̂̇h0, model classesHa andHb, loss function L, set of initial
conditions X0, nominal state-feedback controller k0, number of experiments T , sequence
of trust coefficients 0 ≤ w1 ≤ · · · ≤ wT ≤ 1

output: Dataset D, CBF derivative estimate ̂̇hT , augmented controller kT

D = ∅ // Initialize data set
for j = 1, . . . , T do

x0 ←sample(X0) // Sample initial condition
Dj ←experiment(x0,kj−1) // Execute experiment
D ← D ∪Dj // Aggregate dataset

â, b̂←ERM(Ha,Hb,L, D, ̂̇h0) // Fit estimatorŝ̇
hj ← ̂̇

h0 + â>u+ b̂ // Update derivative estimator

kj ← (1− wj) · k0 + wj · augment(̂̇hj) // Update controller

end

5. Simulation & Experimental Results

In this section we apply the episodic learning algorithm developed in Sections 3 and 4 to the Segway
platform. In particular, we consider a 4-dimensional asymmetrical planar Segway model as in
Gurriet et al. (2018), seen in Figure 1 and 2. The state of the system consists of the horizontal
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position, x, velocity, ẋ, pitch angle, θ, and pitch angle rate θ̇. Control input to a motor in the
system’s wheel is specified as a percentage of the systems battery voltage, which leads to a torque.
This model permits an affine control system as per (1). Stabilization of this system to an equilibrium
configuration is done using a hand-tuned proportional-derivative (PD) controller, kd.

Safety of the Segway system is often encoded as limitations on how far and how fast the Segway
is allowed to tip from an equilibrium configuration. This appears mathematically as a Control
Barrier Function on the pitch angle and pitch angle rate,

h(θ, θ̇) =
1

2

(
θ2max − (θ − θe)2 − cθ̇2

)
, (10)

where θmax is a limit on how far the Segway can tip, θe is an equilibrium angle, and the coefficient
c scales the importance of θ̇ in defining safety. As h is a CBF, the controller (CBF-QP) can be used
to ensure the safety of the system.

To evaluate the impact of model uncertainty on the CBF’s ability to ensure the safety of the
system, we perturb the mass and electrical parameters of the Segway model by up to 15%, but
withhold this uncertain model from the controller (CBF-QP). Figure 1 shows that the model-based
controller is unable to achieve safety, with the state of the system leaving the 0-superlevel set of h
(left), and the value of h falling below 0 (right).

We deploy our episodic learning framework on the uncertain Segway system to overcome this
model uncertainty and achieve safety. In particular, we conduct a sequence of 10 experiments
with varying initial conditions reflecting disturbances to the Segway. Data from each experiment
is aggregated into one dataset that is used to train regression models. For this system we use
neural-networks with one hidden layer of 200 nodes for the estimators â and b̂. These networks
are trained to minimize mean absolute error using stochastic gradient descent (SGD)1. After each
episode the controller (LCBF-QP) is blended with the original controller (CBF-QP) using weights
that grow linearly across the episodes. Figure 1 shows the behavior of the system when the con-
troller (LCBF-QP) is deployed after episodic learning. We see that the state of the system is kept
within the 0-superlevel set of h (left), with the value of h being kept above 0 (right). This indicates
that the learning-augmented controller is able to keep the system safe even with model uncertainty.

To further demonstrate the ability of this learning approach, we deployed it on the physical
Segway system seen in Figure 2. The objective of the Segway was specified as tracking a desired
horizontal velocity profile while satisfying a barrier function on the pitch angle rate specified as:

h(θ̇) =
1

2
(1− cθ̇2). (11)

The desired velocity profile led to a violation of the barrier function when only enforcing the safety
constraint using model information. A series of 3 episodes were conducted tracking this velocity
profile without introducing learned information. The estimators â and b̂were implemented as neural
networks with two hidden layers of 50 nodes and trained on this data after which they were incor-
porated into the controller using wj = 1. This high weighting was used to see noticeable changes
in behavior of the Segway after learning. The improvement in safety using learning can be seen in
Figure 2.

1. The models were implemented and trained in Python using the Keras learning package.
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Figure 1. Simulation results using the model-based CBF controller (CBF-QP) (green) and learning-augmented controller
(LCBF-QP) (blue). Episodic data appears as red traces. (Left) Segway dynamics simulation model. (Center) The phase
portrait showing the evolution of the state of the system leaves the safe set (black ellipse) with the model-based controller,
while it remains within using the learning-augmented controller. (Right) The value of h drops below zero using the
model-based controller, while it remains above zero using the learning-augmented controller. Video can be found at
https://vimeo.com/user106627792/review/380798349/649d4c391e
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Figure 2. Experimental results using the model-based CBF controller (CBF-QP) (green) and learning-augmented con-
troller (LCBF-QP) (blue). (Left) Custom robotic Ninebot Segway platform. (Center) The phase portrait showing
the evolution of the state of the system leaves the safe set (black strip) with the model-based controller, while it re-
mains within using the learning-augmented controller. (Right) The value of h drops below zero (at t = 3) using the
model-based controller, while it remains above zero using the learning-augmented controller. Video can be found at
https://vimeo.com/user106627792/review/380798276/f37b003db3

6. Conclusions & Future Work

We presented an episodic learning framework that integrates with Control Barrier Functions, a
model-based nonlinear control method for ensuring safety. Our method is able to learn unmod-
eled dynamics and parametric error as they directly impact the safety of the system and incorporate
this information into an optimization based controller. We demonstrate the ability of this method to
improve the safety of a Segway system in simulation and experimentally on hardware.

Future work will seek to investigate the impact of residual error on safe behavior through the
analysis established in Taylor et al. (2019a). Furthermore, this work will be used in the development
of a safe exploration framework that actively collects data relevant to both the CLF and CBF learning
problems. Lastly, this work will be further demonstrated in more complex hardware applications to
assess the validity of the assumptions made and demonstrate the overall capability.
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