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Abstract—Control Barrier Functions (CBFs) have been demon-
strated to be a powerful tool for safety-critical controller design
for nonlinear systems. Existing design paradigms do not address
the gap between theory (controller design with continuous time
models) and practice (the discrete time sampled implementation
of the resulting controllers); this can lead to poor performance
and violations of safety for hardware instantiations. We propose
an approach to close this gap by synthesizing sampled-data
counterparts to these CBF-based controllers using approximate
discrete time models and Sampled-Data Control Barrier Functions
(SD-CBFs). Using properties of a system’s continuous time model,
we establish a relationship between SD-CBFs and a notion
of practical safety for sampled-data systems. Furthermore, we
construct convex optimization-based controllers that formally
endow nonlinear systems with safety guarantees in practice. We
demonstrate the efficacy of these controllers in simulation.

I. INTRODUCTION

Nonlinear control methods offer promising solutions to
many modern safety-critical engineering applications. How-
ever, theoretically sound controller designs often fail to meet
safety requirements when deployed on real systems. Thus, it
is critical to understand the discrepancies between theoreti-
cal design and practical implementation mathematically, and
to design controllers that close these gaps. Specifically, we
address the challenges in designing safety-critical controllers
for continuous time systems for which controllers are realized
with discrete time sampling implementations, known as the
sampled-data control problem [1].

Control Barrier Functions (CBFs) have become a popular
tool for constructively synthesizing controllers that endow
nonlinear systems with rigorous safety guarantees [2], [3].
While originally posed for continuous time systems, they
have similarly been developed for discrete time systems [4]
and sampled-data systems [5]–[13]. These existing works take
an emulative approach to sampled-data control, in which
continuous time safety conditions are met more conservatively
to ensure that a system remains safe throughout a sample
period. The approaches in [6], [7], [10]–[13] achieve this
by adding a margin term to the standard CBF derivative
condition that captures possible changes in the dynamics and
CBF during the inter-sample period. This margin term often
directly incorporates an exponential of Lipschitz constants and
the sample period, requiring exceptionally high sample rates
to overcome conservativeness, as studied in [10]. The work
in [9] takes a computationally intensive approach to reduce
conservatism by propagating sensitivity functions, which may
be difficult for high-dimensional systems.
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While the aforementioned results have focused on safety for
sampled-data nonlinear systems, there exists a significant body
of literature on stabilization of sampled-data nonlinear systems
through discrete time design using approximate models. Moti-
vated by the challenge of finding exact representations of the
discrete time sampled-data dynamics of nonlinear systems, the
work in [14], [15] proposed a framework for achieving a type
of practical stability using approximations of the discrete time
sampled-data dynamics. Subsequently, a number of standard
nonlinear stabilization techniques such as backstepping [16],
model predictive control [17], Lyapunov-redesign [18], and
optimization based control via Control Lyapunov Functions
[19], were extended to use approximate models of discrete-
time dynamics. These approaches often yielded significant
improvements over their continuous time counterparts, even at
relatively slow sample rates [20]. Notably, a similar framework
for achieving safety has yet to be proposed.

In this work we propose a novel approach for achieving
safety of sampled-data nonlinear systems via approximate
models of discrete time sampled-data dynamics. In Section
II we describe the sampled-data control setting and establish
a consistency result on how accurately sampled-data dynamics
of a nonlinear system can be captured by a Runge-Kutta
approximation. In Section III we propose a novel definition
of practical safety for sampled-data systems. Our definition
mirrors the notion of practical stability developed in [14], such
that a system is practically safe if its state can be kept arbi-
trarily close to a safe set at sample times through sufficiently
high sample rates. This leads to the unification of discrete time
Barrier Functions [4] with regularity properties developed in
[14], wherein we formulate Sampled-Data Barrier Functions
(SD-BFs) and their control counterparts, Sampled-Data Con-
trol Barrier Functions (SD-CBFs). We establish properties of
this new class of CBFs and relate them to Lyapunov functions.

The main contribution of this paper, given in Section IV, es-
tablishes the practical safety of sampled-data systems through
SD-BFs. We achieve this by unifying the key properties of
SD-BFs with the accuracy guarantees provided by consistent
approximations of the discrete sampled-data dynamics. This
result is used to inform controller synthesis in Section V,
where we explore how appropriately designed SD-CBFs and
Runge-Kutta approximations of systems with higher-order
relative degrees preserves convexity with respect to the input
of the SD-CBF difference constraint. This allows for SD-CBFs
to be directly incorporated into a convex optimization based
controller that achieves practical safety. We demonstrate this
controller in simulation, illustrating the role that sample rate
plays in sample-data systems in the context of practical safety.
The proof of the main result is presented in the text, with all
other proofs in the appendix.
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II. SAMPLED-DATA CONTROL

Throughout this work, we will consider the nonlinear con-
trol system governed by the differential equation:

ẋ = f(x) + g(x)u, (1)

for state signal x and control input signal u taking values in
Rn and Rm, respectively, drift dynamics f : Rn → Rn, and
actuation matrix function g : Rn → Rn×m. Consider an open
subset Z ⊆ Rn × Rm and its projection onto the state space
X , {x ∈ Rn | ∃ u ∈ Rm s.t. (x,u) ∈ Z} ⊆ Rn. Assume
there exists Tmax ∈ R++ (the strictly positive reals) such that
for every state-input pair (x,u) ∈ Z , there exists a unique
solution ϕ : [0, Tmax]→ Rn satisfying:

ϕ̇(t) = f(ϕ(t)) + g(ϕ(t))u, ϕ(0) = x. (2)

for all t ∈ (0, Tmax). Given an h ∈ (0, Tmax], we define a
controller k : X → Rm as h-admissible if for any state x ∈ X ,
the state-input pair (x,k(x)) satisfies (x,k(x)) ∈ Z and the
corresponding solution ϕ satisfies ϕ(t) ∈ X for all t ∈ [0, h].

Remark 1. This requirement on h-admissible controllers will
ensure that in the sampled-data context, the closed-loop system
is forward complete and its evolution may be described by
iterative solutions to (2). Though verifying h-admissibility of
a controller may be intractable, assuming that a controller is
h-admissible and renders the set X invariant is relatively weak
as X is defined to ensure the continued existence of solutions
rather than reflecting a task-specific set.

The preceding construction of solutions and admissible
controllers describes the sampled-data control setting, in which
inputs are applied to the system with a zero-order hold over
a sample period. More precisely, the set of possible sample
periods is given by I = (0, Tmax]. Given a sample period
h ∈ I and an h-admissible controller k : X → Rm, the state
and control input signals in (1) satisfy:

u(t) = k(x(tk)) ∀t ∈ [tk, tk+1), (3)

with sample times satisfying tk+1−tk = h for all k ∈ Z+ (the
non-negative integers). In general, the evolution of the system
over a sample period is given by the exact map Feh : Z → Rn:

Feh(x,u) = x +

∫ h

0

[f(ϕ(τ)) + g(ϕ(τ))u] dτ, (4)

for all state-input pairs (x,u) ∈ Z . We call {kh : X →
Rm | h ∈ I} a family of admissible controllers if there is an
h∗ ∈ I such that for each h ∈ (0, h∗), kh is h-admissible.
This enables the following definition:

Definition 1 (Exact Family). We define the exact family of
maps {Feh | h ∈ I}, and for a family of admissible controllers
{kh | h ∈ I}, we define the exact family of controller-map
pairs {(kh,Feh) | h ∈ I}.

For all h ∈ I such that kh is h-admissible, the recursion
xk+1 = Feh(xk,kh(xk)) ∈ X is well-defined for all x0 ∈ X
and k ∈ Z+. In practice, closed-form expressions for the exact
family of maps are rarely obtainable, suggesting the use of
approximations in the control synthesis process. While there

are many approaches to approximating this family of maps,
we will use the following common class of approximations:

Definition 2 (Runge-Kutta Approximation Family). Let p ∈
N. We define the Runge-Kutta approximation family of maps
{Fa,ph | h ∈ I}, where for every sample period h ∈ I , define
Fa,ph : Z → Rn recursively as:

Fa,ph (x,u) = x + h

p∑
i=1

bi(f(zi) + g(zi)u), (5)

zi = x + h

i−1∑
j=1

ai,j(f(zj) + g(zj)u), (6)

for all pairs (x,u) ∈ Z , with z1 = x. Here, b1, . . . , bp ∈ R+

satisfy
∑p
i= bi = 1 and ai,j ∈ R for each i ∈ {1, . . . p} and

j ∈ {1, . . . , i − 1}. For a family of admissible controllers
{kh | h ∈ I}, we may define the Runge-Kutta approximation
family of controller-map pairs {(kh,Fa,ph ) | h ∈ I}.

Remark 2. There may be an h ∈ I such that the controller kh
is h-admissible but the recursion xk+1 = Fa,ph (xk,kh(xk))
is not well-defined for all x0 ∈ X and k ∈ Z+. This is due
to this map enabling xk /∈ X for some k > 0. While our
results do not need this recursion to be well-defined, this can
be achieved by extending the domain of kh to Rn.

Defining class K (K∞) and Ke (Ke∞) comparison functions
as in [21] and [3], the following definition characterizes how
accurately an approximate map captures the exact map:

Definition 3 (One-Step Consistency). A family {(kh,Fh) :
h ∈ I} is one-step consistent with {(kh,Feh) | h ∈ I} over a
set A ⊆ X if there exist a function ρ ∈ K∞ and h∗ ∈ I such
that for all x ∈ A and h ∈ (0, h∗), we have:

‖Feh(x,kh(x))− Fh(x,kh(x))‖ ≤ hρ(h). (7)

Before establishing a relationship between a Runge-Kutta
approximation family and one-step consistency, we state the
following lemma we will use throughout this work:

Lemma 1. For any compact set K ⊂ X , there is an ε ∈ R++

such that K ⊕Bε ⊂ X , where Bε is the closed norm-ball of
radius ε and ⊕ denotes the Minkowski sum. Moreover, K⊕Bε
is compact.

We now provide our first contribution by showing how
properties of the dynamics and a family of controllers can
be used to establish one-step consistency of the Runge-Kutta
approximation family of controller-map pairs with the exact
family of controller-map pairs:

Theorem 1. Suppose f and g are locally Lipschitz continuous
over X . Let K ⊂ X be compact, consider a family of
admissible controllers {kh | h ∈ I}, and suppose there exists
h1 ∈ I and a bound MK ∈ R+ such that for every sample
period h ∈ (0, h1), the controller kh is bounded by MK over
K. Then the family {(kh,Fa,ph ) | h ∈ I} is one-step consistent
with {(kh,Feh) | h ∈ I} over the set K.

III. SAMPLED-DATA CONTROL BARRIER FUNCTIONS

In this section we develop a notion of practical safety
for sampled-data systems, and define Sampled-Data Control



Barrier Functions (SD-CBFs) as a tool for safety-critical
sampled-data control synthesis. Lastly, we highlight familiar
settings which satisfy the properties required by SD-CBFs.

We begin with the following definition relating the evolution
of a sampled-data system and a set:

Definition 4 (Forward Invariance). A set C ⊆ X is forward in-
variant for a controller-map pair (k,F) if for every x ∈ C and
number of steps k ∈ Z+, the recursion xk+1 = F(xk,k(xk))
is well-defined and satisfies xk ∈ C.

Remark 3. This definition of forward invariance requires that
the system state be contained in the set C at sample times,
which is aligned with the notion of stability for sampled-data
systems presented in [14]. This differs from the standard defi-
nition of forward invariance used in the existing sampled-data
safety literature, which additionally requires that the solution
remain in the set C between sample times, i.e. ϕ(t) ∈ C for
t ∈ [tk, tk+1]. As seen in this literature, requiring inter-sample
safety typically requires selecting control actions that meet a
robustified continuous time barrier derivative condition. This
robust condition typically depends on parameters of the system
that are difficult to estimate, and using over-approximations
may produce very conservative behavior [10]. Reducing this
conservativeness usually amounts to operating at exceedingly
high sample rates, which may not be practical, and which may
excite unmodeled features of the system dynamics. Moreover,
in practice, inter-sample safety violations at high sample rates
can be inconsequential (and may not even be detectable).

We often do not have a closed-form expression for the exact
family of maps and will need to design controllers using an
approximate family of maps. The following definition will be
used to describe the safety properties of the exact family of
controller-map pairs when design is done with approximations:

Definition 5 (Practical Safety). A family {(kh,Fh) : h ∈ I}
is practically safe with respect to a set C ⊆ X if for each
R ∈ R++, there exists an h∗ ∈ I such that for each sample
period h ∈ (0, h∗), there is a corresponding set Ch ⊆ X that
is forward invariant for the controller-map pair (kh,Fh) and
satisfies C ⊆ Ch ⊆ C ⊕BR.

Remark 4. This definition is posed to mirror that of practical
stability for sampled-data systems proposed in [14]. In par-
ticular, the burden of proof lies with small values of R. If
R′ ≥ R and Ch is a forward invariant subset of C ⊕BR, then
it is automatically a forward invariant subset of C ⊕BR′ .

Before defining Sampled-Data Control Barrier Functions,
for a non-empty set C ⊆ X , we denote dC(x) = infy∈C ‖y −
x‖ for all x ∈ X . We now define Sampled-Data Barrier
Functions and Sampled-Data Control Barrier Functions:

Definition 6 (Sampled-Data Barrier Function Candidate).
Consider a set C ⊆ X . A collection of functions {sh | h ∈ I}
is a family of Sampled-Data Barrier Function Candidates on
C if there exist h∗ ∈ I , a function α ∈ Ke, a radius ε ∈ R++,
and a Lipschitz constant M ∈ R++ such that:

sh(x1) > 0, sh(x2) = 0, sh(x3) < 0, (8)
hα(sh(x4)) ≤ sh(x4), (9)
|sh(x5)− sh(x6)| ≤M‖x5 − x6‖, (10)

Fig. 1. Visualizing the properties (8, 9, 10, 11) of SD-BF Candidates.
The dark green region represents the lower bound hα(sh(x4)) and
sh(x6) cannot be in the red region due to the Lipschitz bound.

for all states x1 ∈ Int(C), x2 ∈ ∂C, x3 ∈ X \ C, x4 ∈ C,
x5,x6 ∈ X ∩ (C ⊕ Bε), and sample periods h ∈ (0, h∗), and
for each η ∈ R++ there exists a δ ∈ R++ such that1:

dC(x) > η =⇒ sh(x) < −δ, (11)

for all states x ∈ X∩(C⊕Bε) and sample periods h ∈ (0, h∗).

Definition 7 (Sampled-Data Barrier Control Barrier Func-
tions). A family of Sampled-Data Barrier Function Candidates
{sh | h ∈ I} is a family of Sampled-Data Control Barrier
Functions on C for {Fh | h ∈ I} if for each state x ∈ X and
sample time h ∈ (0, h∗), there exists a corresponding input
u ∈ Rm such that (x,u) ∈ Z and:

sh(Fh(x,u))− sh(x) ≥ −hα(sh(x)). (12)

Definition 8 (Sampled-Data Barrier Function). Given a fam-
ily of admissible controllers {kh | h ∈ I}, a family of
Sampled-Data Barrier Function Candidates {sh | h ∈ I}
is a family of Sampled-Data Barrier Functions on C for
{(kh,Fh) | h ∈ I} if:

sh(Fh(x,kh(x)))− sh(x) ≥ −hα(sh(x)), (13)

for all states x ∈ X and sample times h ∈ (0, h∗).

Remark 5. We note that the conditions in (8)-(9) are standard
conditions required by barrier functions for discrete systems
[4]. The inequalities in (8) imply that for each h ∈ (0, h∗),
C is the 0-superlevel set of sh. The inequality in (9) places
a requirement on the SD-BF decrement through (13) that
implies that for each h ∈ (0, h∗), C is forward invariant for
(kh,Fh). The condition in (10) requires the SD-BF to be
Lipschitz continuous over a slightly larger set than C with
a Lipschitz constant that is uniform in the sample period, and
will be used to relate exact and approximate families through
one-step consistency. The implication in (11) resembles a
coercivity condition, requiring the SD-BF value to decrease
locally outside of the set C in a way that is uniform in the
sample-period. This property will be critical for producing
forward invariant sets contained in C⊕BR for arbitrarily small
values of R. The distinction between the conditions in (13) and
(12) are that the former applies as a certificate for a closed-
loop system, while the latter condition states the possibility of
safe control synthesis for an open-loop system.

To more clearly understand the nature of the properties (8)-
(12) we will discuss some familiar settings in which they are
implied. We first note that as in the continuous time Control

1See Theorem 2 for how this property relates to regular values.



Barrier Function literature [3], a continuously differentiable
function s : X → R has c ∈ R as a regular value if s(x) = c
implies ∇s(x) 6= 0 for all states x ∈ X . The following result
makes a connection between regular values and ensuring that
the property in (11) is satisfied:

Theorem 2. Suppose that s : X → R is twice continuously
differentiable with a compact 0-superlevel set C and 0 as a
regular value. There is an ε ∈ R++ such that each η ∈ R++

corresponds to a δ ∈ R++ satisfying:

dC(x) > η =⇒ s(x) < −δ. (14)

for all states x ∈ X ∩ (C ⊕Bε).

Our next result shows how Lyapunov functions used for
practical stability of sampled-data systems [14], [19] yield
Sampled-Data Control Barrier Functions:

Theorem 3. Consider a family of controller map pairs
{(kh,Fh) | h ∈ I} for which the corresponding family of
controllers is admissible. Suppose that for a locally Lipschitz
continuous function V : Rn → R+, there exist α1, α2 ∈ K∞,
α3 ∈ K and h∗ ∈ I such that:

α1(‖x1‖) ≤ V (x1) ≤ α2(‖x1‖), (15)
V (Fh(x2,kh(x2)))− V (x2) ≤ −hα3(‖x2‖), (16)

for all x1 ∈ Rn, x2 ∈ X , and sample periods h ∈ (0, h∗).
For any c ∈ R, define Γ : R→ P(X ) as:

Γ(c) = {x ∈ X : V (x) ≤ c}, (17)

for all c ∈ R. If for some c∗ ∈ R++, Γ(c∗) is compact, then for
any c ∈ (0, c∗), the family {sh : X → R | h ∈ I} satisfying:

sh(x) = c− V (x), (18)

for all x ∈ X and h ∈ I is a family of Sampled-Data Control
Barrier Functions on Γ(c) for the family {Fh | h ∈ I}.

We note that if X = Rn, the compactness assumption for
Γ(c∗) is redundant. The lower bound on V in (15) shows that
if x ∈ Γ(c∗), then ‖x‖ ≤ α−1(V (x)) ≤ α−1(c∗), implying
Γ(c∗) is bounded, and Γ(c∗) is closed since it is the preimage
of the closed interval [0, c∗] under the continuous function V .

IV. PRACTICAL SAFETY

In this section we establish our main contribution by con-
necting practical safety and Sampled-Data Barrier Functions.

The following result establishes how a family of SD-BFs
for an approximate family of controller-map pairs can be used
to ensure the practical safety of the exact family of controller-
map pairs via one-step consistency:

Theorem 4. Consider a set C ⊆ X and a family of admissible
controllers {kh | h ∈ I}. Suppose that:

1) There exists a family of Sampled-Data Barrier Functions
on C for a family {(kh,Fh) | h ∈ I}.

2) There exists an ε′ ∈ R++ such that the family
{(kh,Fh) | h ∈ I} is one-step consistent with the exact
family {(kh,Feh) | h ∈ I} over the set X ∩ (C ⊕Bε′).

Then the exact family {(kh,Feh) | h ∈ I} is practically safe
with respect to C.

Proof. Let h∗1, α, ε, and M be defined as in Definition 6. By
assumption, there exists an h∗2 ∈ I and ρ ∈ K such that (7)
holds for all x ∈ X ∩ (C ⊕ Bε′) and h ∈ (0, h∗2). Since the
family of controllers is assumed to be admissible, there is an
h∗3 ∈ I such that kh is h-admissible for each h ∈ (0, h∗3).

Let R ∈ R++, and pick R′ ∈ R++ such that R′ ≤
min{ε, ε′, R}. By (11), there exist δ,∆ ∈ R++ such that:

dC(x) > R′/2 =⇒ sh(x) < −δ, (19)
dC(x) > δ/(2M) =⇒ sh(x) < −∆, (20)

for all x ∈ X∩(C⊕Bε). Let h ∈ I with h < min {h∗1, h∗2, h∗3}.
For any c ∈ R, we denote the c-superlevel set of sh as:

Ωc,h = {x ∈ X | sh(x) ≥ c}. (21)

For any state x ∈ Ω−δ,h, we have dC(x) ≤ R′/2, and thus
C ⊆ Ω−δ,h ⊆ X ∩ (C ⊕BR′/2) ⊆ C ⊕BR.

We will prove that for small enough h, the set Ω−δ,h is
forward invariant for the controller-map pair (kh,F

e
h). We

denote three cases, considering a state x ∈ X such that either
(1) x ∈ C, (2) x ∈ Ω−δ,h \ C and dC(x) ≤ δ/(2M), or
(3) x ∈ Ω−δ,h \ C and dC(x) > δ/(2M).

Case 1: Suppose x ∈ C. From (13) and (9), we have:

sh(Fh(x,kh(x)))− sh(x) ≥ −hα(sh(x)) ≥ −sh(x), (22)

so sh(Fh(x,kh(x))) ≥ 0, or Fh(x,kh(x)) ∈ C. By one-step
consistency, we have:

‖Feh(x,kh(x))− Fh(x,kh(x))‖ ≤ hρ(h), (23)

so if hρ(h) ≤ ε, then Feh(x,kh(x)) ∈ X ∩ (C ⊕Bε). Thus:

|sh(Feh(x,kh(x)))− sh(Fh(x,kh(x)))| ≤Mhρ(h), (24)

and if Mhρ(h) ≤ δ as well, then:

sh(Feh(x,kh(x))) ≥ sh(Fh(x,kh(x)))−Mhρ(h) ≥ −δ,
(25)

giving us Feh(x,kh(x)) ∈ Ω−δ,h. The analysis of this case
gives us the requirement hρ(h) ≤ min{ε, δ/M}.

Before continuing to cases 2 and 3, we establish some
additional properties. First, note that the superlevel sets have
the containment property Ω−δ/2,h ⊆ Ω−δ,h. Next, for any
η ∈ R++ and any x ∈ X ∩ (C ⊕ Bε) with x /∈ C, there is a
point y ∈ C such that ‖x− y‖ < dC(x) + η. Therefore:

sh(x) ≥ sh(y)−M‖x− y‖ ≥ −MdC(x)−Mη, (26)

since sh(y) ≥ 0. Since η can be chosen arbitrarily small, we

Fig. 2. A visual representation of the main sets and three cases
discussed in the proof of Theorem 4.



have sh(x) ≥ −MdC(x). If dC(x) ≤ δ/(2M), then sh(x) ≥
−δ/2 and so X ∩ (C ⊕Bδ/(2M)) ⊆ Ω−δ/2,h ⊆ Ω−δ,h.

Next, consider x ∈ Ω−δ,h \ C. Since x /∈ C, meaning
sh(x) < 0 and thus α(sh(x)) < 0, we have from (13) that:

sh(Fh(x,kh(x))) ≥ sh(x)− hα(sh(x)) > −δ. (27)

Thus Fh(x,kh(x)) ∈ Ω−δ,h ⊆ X ∩ (C ⊕ BR′/2) so we can
apply one step consistency to achieve:

‖Feh(x,kh(x))− Fh(x,kh(x))‖ ≤ hρ(h). (28)

If hρ(h) ≤ R′/2, then Feh(x,kh(x)) ∈ X ∩ (C ⊕ BR′), in
which case the Lipschitz property of sh yields the bound:

|sh(Feh(x,kh(x)))− sh(Fh(x,kh(x)))| ≤Mhρ(h). (29)

Note that because R′/2 < ε, the requirement from Case 1 can
be replaced by hρ(h) ≤ min {R′/2, δ/M}.

Case 2: Suppose x ∈ Ω−δ,h \ C and dC(x) ≤ δ/(2M).
Since x 6∈ C and X ∩ (C ⊕ Bδ/(2M)) ⊆ Ω−δ/2,h, we have
−δ/2 ≤ sh(x) < 0. Therefore:

sh(Fh(x,kh(x))) ≥ sh(x)− hα(sh(x)) ≥ −δ/2, (30)

so Fh(x,kh(x)) ∈ Ω−δ/2,h. By adding and subtracting
sh(Feh(x,kh(x))) and using (29), we have:

sh(Feh(x,kh(x))) ≥ −Mhρ(h)− δ/2, (31)

when hρ(h) ≤ R′/2. If Mhρ(h) ≤ δ/2 as well, then
sh(Feh(x,kh(x))) ≥ −δ, or Feh(x,kh(x)) ∈ Ω−δ,h. Thus we
update the requirements to be hρ(h) ≤ min {R′/2, δ/(2M)}.

Case 3: Suppose x ∈ Ω−δ,h \ C and dC(x) > δ/(2M).
From (20), we have:

sh(Fh(x,kh(x)))− sh(x) > −hα(−∆). (32)

Adding and subtracting sh(Feh(x,kh(x))) and (29) yields:

sh(Feh(x,kh(x))) > sh(x)−Mhρ(h)− hα(−∆), (33)
= sh(x)− h(Mρ(h) + α(−∆)), (34)

when hρ(h) ≤ R′/2. If Mρ(h) ≤ −α(−∆) as well, then
sh(Feh(x,kh(x))) > sh(x) ≥ −δ, or Feh(x,kh(x)) ∈ Ω−δ,h.

To conclude, if both:

1) h < min
{
h∗1, h

∗
2, h
∗
3, ρ
−1(−α(−∆)/M)

}
,

2) hρ(h) ≤ min {R′/2, δ/(2M)},
then the set Ch , Ω−δ,h ⊆ C ⊕ BR is forward invariant
for the controller-map pair (kh,F

e
h), and thus the family

{(kh,Feh) | h ∈ I} is practically safe with respect to C.

V. CONTROL SYNTHESIS & SIMULATION

In this section we present a result on the convexity of the
CBF decrement condition, and define an optimization-based
controller via an SD-CBF for achieving practical safety. We
deploy this controller in simulation on an inverted and double
inverted pendulum.

The following result establishes how for a system with a
block integrator structure, a Runge-Kutta approximation fam-
ily of maps of the appropriate order can preserve a convexity
property of a family {sh | h ∈ I}:

Theorem 5. Consider `, γ ∈ N such that n = `γ. Suppose
the system dynamics have the form:

ẋ =


0 I

. . .
. . .
0 I

0


︸ ︷︷ ︸

A

x +


0
...
0

fγ(x) + gγ(x)u


︸ ︷︷ ︸

r(x,u)

, (35)

where fγ : Rn → R` and gγ : Rn → R`×m. For each h ∈ I ,
consider a function sh : Rn → R, and suppose there exists a
function s̃h : (R`)q → R satisfying:

sh(x) = s̃h(ζ1, . . . , ζq), (36)

for all x = (ζ1, . . . , ζγ) ∈ (R`)γ ' Rn. If the function s̃h is
concave with respect to its last argument and Fa,ph : Z → Rn
is a Runge-Kutta Approximation map with p = γ− q+1, then
for α ∈ Ke, then the function φh : Z → R defined as:

φh(x,u) = −sh(Fa,ph (x,u)) + sh(x)− hα(sh(x)), (37)

is convex in its second argument.

The synthesis of safety-critical controllers using Control
Barrier Functions is frequently achieved using convex opti-
mization (typically quadratic programs) [3]. The following
result highlights how we may similarly synthesize a family of
controllers that achieve practical safety through optimization:

Theorem 6. Let {sh | h ∈ I} be a family of SD-CBFs on C
for a family {Fa,ph | h ∈ I} such that the set:

F(x) = {u ∈ Rm | (x,u) ∈ Z and φh(x,u) ≥ 0}, (38)

is closed and convex for each h ∈ I and x ∈ X . Consider a
set of controllers {kh | h ∈ I} satisfying:

kh(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (SD-CBF-OP)

s.t. sh(Fa,ph (x,u))− sh(x) ≥ −hα(sh(x)),

for each x ∈ X and h ∈ (0, h∗), where kd : X → Rm is a
nominal controller. If {kh | h ∈ I} is a family of admissible
controllers, then {sh | h ∈ I} is a family of Sampled-Data
Barrier Functions on C for {(kh,Fa,ph ) | h ∈ I}.

We use this controller in simulation on fully-actuated single
and double inverted pendulums, with dynamics given by:

D(q)q̈ + C(q, q̇)q̇ + G(q) = u (39)

where D, C, and G are functions encoding inertia, Coriolis,
and gravity terms, q, q̇ ∈ Rm are configuration and velocity
vectors, and u ∈ Rm is a torque vector. These terms are
detailed in Table I. With state vector x = (q, q̇) ∈ Rn,
the dynamics in (39) can be expressed in the form (35),
where ` = m and γ = 2. For the single inverted pendulum
we use safe sets with the form of a Lyapunov sublevel set
(sh(x) = 1 − x>Px with P ∈ S2

++ obtained from feedback
linearization), a configuration ellipsoid (s̃h(θ) = 1 − θ2),
and a halfspace (s̃h(θ) = θ + 0.1). For the double inverted
pendulum we enforce safety of a configuration ellipsoid
(s̃(q) = 1−‖q‖22). We use a Runge-Kutta approximation with



System q D : Rm → Sm++ C : Rm × Rm → Rm×m G : Rm → Rm
Single θ 1 0 − sin θ

Double
[
θ1

θ2

] [
3 + 2 cos θ2 1 + cos θ2

1 + cos θ2 1

] [
0 −(2θ̇1 + θ̇2) sin θ2

1
2 (2θ̇1 + θ̇2) sin θ2 − 1

2 θ̇ sin θ2

] [
−2 sin θ1 − sin(θ1 + θ2)

− sin(θ1 + θ2)

]
TABLE I. Terms in pendulum dynamics given by 39. Angles are taken clockwise from upright, and θ2 is taken relative to θ1.

p = 1 (forward Euler) for the Lyapunov sublevel set and p = 2
(midpoint rule) for the other settings. Controllers of the form
(SD-CBF-OP) are employed; for the Lyapunov sublevel set, kd
is a feedback linearizing controller with auxiliary PD control,
and for the other settings, kd is a zero (constant) controller.
With 11 sample periods spaced logarithmically between 0.05
and 0.5 seconds and initial conditions sampled from each safe
set, the closed-loop systems are simulated for 10 seconds. For
the inverted pendulum, 500 initial states are sampled uniformly
from the Lyapunov sublevel set, and 41 × 41 grids of initial
states cover [−1, 1]×[−5, 5] for the configuration ellipsoid and
[−0.1, 1] × [−5, 5] for the halfspace. For the double inverted
pendulum, 500 initial states are drawn with configurations
sampled uniformly from the unit Euclidean ball in R2 and
velocities sampled uniformly from [−1, 1]2. The worst-case
distances from the safe sets are reported as a function of
sample period in Fig. 3. These distances decrease with sample
period for the inverted pendulum, and decrease for sufficiently
small sample periods for the double inverted pendulum.

Fig. 3. The maximum distance from the safe set C (lower is better)
achieved during trials vs. the the sampling frequency. The simulations
and corresponding animations be found at https://bit.ly/CBF-OP and
https://vimeo.com/690803272. Top: The inverted pendulum for 3
different safe sets. Bottom: The double inverted pendulum.

VI. CONCLUSION

In this work we have developed a novel approach for safety-
critical sampled-data control through approximate discrete
time models. Our main contribution, Sampled-Data Control
Barrier Functions, provides a tool for designing practically safe
controllers. Future work will study the relationship between
approximation maps and control methods like backstepping.
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for stabilization of sampled-data nonlinear systems via discrete-time
approximations,” Systems & Control Letters, vol. 38, no. 4-5, pp. 259–
270, 1999.

[15] D. Nesic and A. R. Teel, “A framework for stabilization of nonlinear
sampled-data systems based on their approximate discrete-time models,”
Transactions on Automatic Control, vol. 49, no. 7, pp. 1103–1122, 2004.

[16] ——, “Backstepping on the euler approximate model for stabilization
of sampled-data nonlinear systems,” in Conference on Decision and
Control (CDC), vol. 2. IEEE, 2001, pp. 1737–1742.

[17] L. Grüne and D. Nesic, “Optimization-based stabilization of sampled-
data nonlinear systems via their approximate discrete-time models,”
SIAM Journal on Control and Optimization, vol. 42, no. 1, pp. 98–122,
2003.
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APPENDIX

A. Proof of Lemma 1

Proof. Since X is open, for every x ∈ K, there is a
corresponding open ball centered at x that is contained in
X ; let δx ∈ R++ denote the radius of this ball, and let
Bx ⊂ X denote the open ball centered at x of radius δx/2.
Consider the collection {Bx : x ∈ K}. This collection is
an open cover for the compact set K, implying some finite
sub-collection also covers K. Suppose this finite subcover is
Bx1

, . . . , BxN
for some x1, . . . ,xN ∈ K, respectively. Let

δ = mini δxi , and consider any z ∈ K ⊕Bδ/4. There is some
x ∈ K such that ‖z − x‖ ≤ δ/4. Moreover, there is some
i ∈ {1, . . . , N} such that ‖x − xi‖ < δxi/2. By the triangle
inequality, ‖z−xi‖ < δ/4+δxi/2 < δxi , implying that z ∈ X .
Since z was arbitrary, K ⊕ Bδ/4 ⊆ X , so pick ε ≤ δ/4. To
see that K ⊕Bε is compact, note that the product K ×Bε is
compact and the map (x,y) 7→ x + y is continuous.

B. Proof of Theorem 1

Proof. Consider a compact set K ⊂ X and corresponding
h1 ∈ I and MK ∈ R++, and fix a sample period h ∈ (0, h1).
By Lemma 1, there exists an ε ∈ R++ such that the compact
set N = K ⊕ Bε satisfies N ⊂ X . By assumption, kh is
bounded on K, and since f and g are continuous, f and g are
bounded on N , implying there exists an M ∈ R++ such that:

‖f(z) + g(z)kh(y)‖ ≤M, (40)

for all y ∈ K and z ∈ N . As f and g are locally Lipschitz
continuous over X , it follows that f and g are globally
Lipschitz continuous over N . Therefore:

‖f(z) + g(z)kh(y)− f(y) + g(y)kh(y))‖ (41)
≤ ‖f(z)− f(y)‖+ ‖g(z)− g(y)‖‖kh(y)‖
≤ (Lf + LgMk)‖z− y‖ = ρ(‖z− y‖),

for all states y ∈ K and z ∈ N , where Lf , Lg ∈ R++ are
Lipschitz constants for f and g, respectively, and ρ ∈ K∞
satisfies ρ(r) = (Lf + LgMk)r for all r ∈ R+. Let x ∈ K.
We then have that:

Feh(x,kh(x))− Fa,ph (x,kh(x)) (42)

=

∫ h

0

[f(ϕ(t)) + g(ϕ(t))kh(x)] dt

− h
p∑
i=1

bi(f(zi) + g(zi)kh(x))

=

∫ h

0

[f(ϕ(t)) + g(ϕ(t))kh(x)− (f(x) + g(x)kh(x))] dt

+ h

p∑
i=1

bi[f(x) + g(x)kh(x)− (f(zi) + g(zi)kh(x))],

where we make use of the fact
∑p
i=1 bi = 1.

To bound the first term in (42), let h2 ∈ (0, h1) satisfy h2 <
ε/M . By continuity of ϕ, if ϕ(t0) 6∈ N for any t0 ∈ I , then

there is a minimal time t∗ ∈ (0, t0) such that ‖ϕ(t)− x‖ < ε
for all t ∈ [0, t∗) and ‖ϕ(t∗)− x‖ = ε. We have:

‖ϕ(t)−x‖ ≤
∫ t

0

‖f(ϕ(s))+g(ϕ(s))kh(x)‖ ds ≤Mt, (43)

for all t ∈ [0, t∗]. Since ε = ‖ϕ(t∗) − x‖ ≤ Mt∗, we know
that t∗ ≥ ε/M > h2. Thus if h ∈ (0, h2), then:

‖ϕ(t)− x‖ ≤Mt ≤Mh < Mh2 < ε, (44)

for all t ∈ [0, h], implying ϕ(t) ∈ N for all t ∈ [0, h].
To bound the second term in (42), we show by induction that

if h is sufficiently small, then zi ∈ N for all i ∈ {1, . . . , p}.
First, since z1 = x, we have z1 ∈ N . Next, for i ∈ {1, . . . , p},
suppose zj ∈ N for all j ∈ {1, . . . , i − 1}. Considering the
definition of zi in (6) and the bound (40), we have that:

‖zi − x‖ ≤ h
i−1∑
j=1

|ai,j |‖f(zj) + g(zj)kh(x)‖ (45)

≤Mh

i−1∑
j=1

|ai,j | ≤Mh(p− 1) max
j,k
|aj,k| , Lh

Let h∗ ∈ (0, h2) satisfy h∗ < ε/L. Then for h ∈ (0, h∗),
we have ‖zi − x‖ < ε, or zi ∈ N . Since this choice of h∗

does not depend on i, we can conclude by induction that if
h ∈ (0, h∗), then zi ∈ N for all i ∈ {1, . . . , p}.

We have shown that if h ∈ (0, h∗), then ϕ(t) ∈ N for all
t ∈ [0, h], and zi ∈ N for i ∈ {1, . . . , p}. Thus using the
bound (41) in (42), we have that:

‖Feh(x,kh(x))− Fa,ph (x,kh(x))‖ (46)

≤
∫ h

0

ρ(‖ϕ(t)− x‖) dt+ h

p∑
i=1

biρ(‖zi − x‖)

≤ hρ(Mh) + h

p∑
i=1

biρ(Lh)

= hρ(Mh) + hρ(Lh) ≤ hρ̃(h)

where ρ̃ ∈ K is defined as:

ρ̃(r) = ρ(Mr) + ρ(Lr) (47)

for all r ∈ R+.

C. Proof of Theorem 2

Proof. The boundary ∂C is a closed subset of the compact
set C and is therefore compact. Thus, there is a lower bound
σ ∈ R+ with minx∈∂C ‖∇s(x)‖2 = σ, and since 0 is a regular
value, σ > 0. By Lemma 1, there is an ε′ ∈ R++ with C ⊕
Bε′ ⊂ X and C ⊕Bε′ compact.

Consider a state x ∈ C ⊕ Bε′ with x 6∈ C. There exists a
y ∈ ∂C such dC(x) = ‖y − x‖. Since s has 0 as a regular
value, by [22, Proposition 1.1.9] we have that:

∇s(y) = −‖∇s(y)‖2
x− y

‖x− y‖2
. (48)

As Bε′ is convex, we have that (1− λ)y + λx ∈ C ⊕ Bε′
for all λ ∈ [0, 1]. For some λ∗ ∈ (0, 1), the state ξ , (1 −



λ∗)y + λ∗x satisfies:

s(x) = s(y) + (x− y)>∇s(y)

+
1

2
(x− y)>∇2s(ξ)(x− y) (49)

= −‖∇s(y)‖2‖x− y‖2 +
1

2
(x− y)>∇2s(ξ)(x− y).

(50)

Since C ⊕Bε′ is compact, there is an upper bound µ ∈ R+

such that maxz∈C⊕Bε′
‖∇2s(z)‖2 = µ, we have:

s(x) ≤ −σ‖x− y‖2 +
1

2
µ‖x− y‖22 (51)

= −(σ − µ

2
‖x− y‖2)‖x− y‖2. (52)

Since norms are equivalent in finite dimensions, we have
coefficients c1, c2 ∈ R++ with c1 ≤ c2 such that:

c1‖x− y‖ ≤ ‖x− y‖2 ≤ c2‖x− y‖. (53)

If ‖x− y‖2 ≤ σ/µ, then:

s(x) ≤ −σ
2
‖x− y‖2 ≤ −

c1σ

2
‖x− y‖ = −c1σ

2
dC(x). (54)

Finally, we pick ε ∈ R++ such that ε ≤ min {ε′, σ/(µc2)},
and for any η ∈ R++, we pick δ ∈ R++ such that δ <
c1ση/2.

D. Proof of Theorem 3

Before proving this result, we review the following conti-
nuity definition for set-valued maps:

Definition 9 (Upper Hemicontinuity [23]). Consider a set-
valued function Γ : R→ P(X ); that is, for any a ∈ R, Γ(a) is
a subset of X . For some a ∈ R, if Γ(a) ⊆ X is compact, then
Γ is upper hemicontinuous at a when the following equivalent
conditions are satisfied:

1) For any open set V ⊆ X with Γ(a) ⊆ V , there is an
open set U ⊆ R with Γ(a′) ⊆ V for all a′ ∈ U ,

2) For any real-valued sequence {an ∈ R | n ∈ N} converg-
ing to a and any state-valued sequence {xn ∈ X | n ∈ N}
with xn ∈ Γ(an) for all n ∈ N, there is a subsequence of
the state-valued sequence converging to a limit in Γ(a).

The equivalence of these conditions is established in [23,
Theorem 17.20]. We now proceed to prove Theorem 3:

Proof. For all sample periods h ∈ I , (8) is satisfied by
construction. For a sample period h ∈ (0, h∗), we have:

sh(Fh(x,kh(x)))− sh(x) = −V (Fh(x,kh(x))) + V (x)

≥ hα3(‖x‖) ≥ hα3(α−1
2 (V (x))), (55)

for all x ∈ X . Note that α3 ◦ α−1
2 ∈ K. Pick any γ ∈ R++,

and define αe ∈ Ke as:

αe(r) =

{
γr r ≥ 0,

−α3(α−1
2 (−r)) r < 0,

(56)

for all r ∈ R. Fix a state x ∈ X . If sh(x) ≥ 0, then:

α3(α−1
2 (V (x))) ≥ 0 ≥ −γsh(x) = −αe(sh(x)). (57)

Otherwise, if sh(x) < 0, then V (x) > c, so:

α3(α−1
2 (V (x))) ≥ α3(α−1

2 (V (x)− c)) (58)

= α3(α−1
2 (−sh(x))) = −αe(sh(x)). (59)

Thus (13) holds using αe, and kh(x) can be used in (12).
Moreover, we have that (9) holds for all h ≤ 1/γ.

Since Γ(c) ⊆ Γ(c∗), we have that Γ(c) is bounded, and
Γ(c) is closed since it is the preimage of the closed interval
[0, c] under the continuous function V . Therefore, Γ(c) is
compact, and Lemma 1 implies there is an ε ∈ R++ such
that Γ(c) ⊕ Bε ⊂ X and Γ(c) ⊕ Bε is compact. Since V is
locally Lipschitz continuous on X , we can choose a global
Lipschitz constant over Γ(c)⊕Bε, such that (10) holds.

To show that (11) holds, consider a real-valued sequence
{cn ∈ R | n ∈ N} converging to c and a state-valued sequence
{xn ∈ X | n ∈ N} with xn ∈ Γ(cn). For any ε′ ∈ R++ with
c + ε′ < c∗, there is a corresponding Nε′ ∈ N such that
|c− cn| < ε′ for all n ∈ N with n ≥ Nε′ . This means:

V (xn) ≤ c+ ε′ < c∗, (60)

or xn ∈ Γ(c∗) for all n ∈ N with n ≥ Nε′ . Since Γ(c∗) is
compact, there is a state-valued subsequence converging to a
limit in Γ(c∗); denote this subsequence by {xnk

| k ∈ N} and
denote its limit by x ∈ Γ(c∗). For any ε′ ∈ R++, there is a
corresponding Kε′ ∈ N such that:

V (xnk
) ≤ c+ ε′, (61)

for all k ∈ N with k ≥ Kε′ . Since ε′ was arbitrary and V is
continuous, V (x) ≤ c, or x ∈ Γ(c).

Thus Γ is upper hemicontinuous by the second condition of
Definition 9. Consider any η ∈ R++. Letting Bη denote the
open ball of radius η, the set Γ(c)⊕Bη is an open subset of
Rn since it can be represented as a union of open balls, so
X ∩ (Γ(c)⊕Bη) is an open subset of X containing Γ(c). The
equivalent first condition of upper hemicontinuity shows that
for any η ∈ R++, there is a corresponding δ ∈ R++ such that
Γ(c′) ⊆ X ∩ (Γ(c) ⊕ Bη) for all c′ ∈ (c − 2δ, c + 2δ). For
any x ∈ X , if V (x) ≤ c+ δ, then dΓ(c)(x) ≤ η. Therefore, if
dΓ(c)(x) > η, then V (x) > c+ δ. This means:

dΓ(c)(x) > η =⇒ sh(x) < −δ. (62)

for all x ∈ X , implying that (11) is satisfied.

E. Proof of Theorem 5

Proof. For all (x,u) ∈ Z , denote:

Fa,ph (x,u) = ((F1)a,ph (x,u), . . . , (Fγ)a,ph (x,u)), (63)

where (Fi)
a,p
h : Z → R` for all i ∈ {1, . . . , γ}. For (x,u) ∈

Z and degree d ∈ {0, . . . , γ − 1}, the block vector r(x,u)
can be nonzero only in the last (γth) block. Noting the block
chain-of-integrators structure of A, we see the block vector
Adr(x,u) can be nonzero only in the (γ − d)th block, and
for a degree d polynomial ρd, the block vector ρd(A)r(x,u)
can be nonzero only in the last d + 1 blocks (that is, blocks
γ − d through γ).



Consider a state-input pair (x,u) ∈ Z . We have:

Fa,ph (x,u) = x + h

p∑
i=1

bi(Azi + r(zi,u)), (64)

zi = x + h

i−1∑
j=1

ai,j(Azj + r(zj ,u)), (65)

with z1 = x. By induction, for any i ∈ {1, . . . , p}, we can
show that:

zi = ρi,i−1(A)x +

i−1∑
j=1

σi,i−j−1(A)r(zj ,u), (66)

where ρi,i−1 is a degree i − 1 polynomial, and for j ∈
{1, . . . , i − 1}, σi,i−j−1 is a degree i − j − 1 polynomial.
Indeed, z1 = Ix, and assuming (66) is true for 0, . . . , i − 1,
substituting (66) into (65) yields the following:

zi =

degree i−1︷ ︸︸ ︷(
I + h

i−1∑
j=1

ai,j

degree j︷ ︸︸ ︷
Aρj,j−1(A)

)
︸ ︷︷ ︸

,ρi,i−1(A)

x + h

i−1∑
j=1

ai,jr(zj ,u)

+ h

i−1∑
k=1

k−1∑
j=1

ai,kAσk,k−j−1(A)r(zj ,u), (67)

which we may further manipulate to obtain:

zi − ρi,i−1(A)x

=

i−1∑
j=1

h

(
ai,j +

i−1∑
k=j+1

ai,kAσk,k−j−1(A)︸ ︷︷ ︸
degree k−j

)
︸ ︷︷ ︸

degree i−j−1

r(zj ,u), (68)

,
i−1∑
j=1

σi,i−j−1(A)r(zj ,u), (69)

establishing (66) holds for i. Substituting the expression (66)
into (64) and following a similar sequence of steps, we find a
degree p polynomial ρ̃p, and for each i ∈ {1, . . . , p}, a degree
p− i polynomial σ̃p−i such that:

Fa,ph (x,u) = ρ̃p(A)x +

p∑
i=1

σ̃p−i(A)r(zi,u). (70)

For i ∈ {1, . . . , p}, the term σ̃p−i(A)r(zi,u) can be nonzero
only in blocks γ − (p − i) = q + i − 1 through γ.
The highest-order polynomial multiplying the block vectors
r(z1,u), . . . , r(zp,u) is σ̃p−1 = σ̃γ−q . Therefore, the func-
tions (F1)a,ph , . . . , (Fq−1)a,ph are independent of their second
argument (they depend only on state). Moreover, (Fq)

a,p
h (x,u)

depends on the block vector r(z1,u) = r(x,u), which de-
pends on u affinely, and does not depend on the block vectors
r(z2,u), . . . , r(zp,u), which may depend on u nonlinearly.

The function sh ◦ Fa,ph : Z → R satisfies:

sh(Fa,ph (x,u)) = s̃h((F1)a,ph (x,u), · · · , (Fq)a,ph (x,u)),

for all (x,u) ∈ Z , and since the composition of a concave
function and an affine function is concave, sh ◦ Fa,ph is

concave with respect to its second argument. Thus we have
φh as defined in (37) is a convex function of its second
argument.

F. Proof of Theorem 6

Proof. Let h ∈ I and x ∈ X . As sh is a SD-CBF on C, there
exists a u′ ∈ Rm such that (x,u′) ∈ Z and:

sh(Fa,ph (x,u′))− sh(x) ≥ −hα(sh(x)), (71)

implying that u′ ∈ F(x). Thus the optimization problem in
(SD-CBF-OP) is feasible. Define the compact, convex set:

A =

{
u ∈ Rm

∣∣∣∣∣ 1

2
‖u− kd(x)‖22 ≤

1

2
‖u′ − kd(x)‖22

}
.

(72)
As the set F(x) is closed and convex, the set A ∩ F(x) is
compact and convex. As the cost of the optimization problem
is continuous and strictly convex with respect to u, there exists
a unique minimizer u∗ ∈ A ∩ F(x), and by the definition of
A, we have that 1

2‖u
∗ − kd(x)‖22 < 1

2‖u − kd(x)‖22 for all
u ∈ F(x) \A, implying u∗ is the unique minimizer in F(x).
Moreover, as u∗ ∈ F(x), we have that:

sh(Fa,ph (x,kh(x)))− sh(x) ≥ −hα(sh(x)), (73)

and as x was arbitrary, we have that sh is a SD-BF for the
controller-map pair (kh,F

a,p
h ). As h was arbitrary, we may

extended this result to the respective families.
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