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Abstract— This paper presents a framework that leverages
both control theory and machine learning to obtain stable
and robust bipedal locomotion without the need for manual
parameter tuning. Traditionally, gaits are generated through
trajectory optimization methods and then realized experimen-
tally — a process that often requires extensive tuning due to
differences between the models and hardware. In this work,
the process of gait realization via hybrid zero dynamics (HZD)
based optimization is formally combined with preference-based
learning to systematically realize dynamically stable walking.
Importantly, this learning approach does not require a care-
fully constructed reward function, but instead utilizes human
pairwise preferences. The power of the proposed approach
is demonstrated through two experiments on a planar biped
AMBER-3M: the first with rigid point-feet, and the second
with induced model uncertainty through the addition of springs
where the added compliance was not accounted for in the
gait generation or in the controller. In both experiments,
the framework achieves stable, robust, efficient, and natural
walking in fewer than 50 iterations with no reliance on a
simulation environment. These results demonstrate a promising
step in the unification of control theory and learning.

I. INTRODUCTION

Despite advancements within robotics, realizing dynamic
bipedal locomotion on hardware [1] remains a benchmark
problem across the fields of control, engineering, high-
performance computing and machine learning. The dynamics
and control community has historically approached the chal-
lenge of walking from theory applied to real-world platforms,
for example Raibert’s seminal work on hopping robots [2].
Such theory includes locomotion stability, which has been
well studied and realized experimentally from various control
perspectives including zero moment point (ZMP) [3] and
simple model-based methods, such as LIP [4], SLIP [5], and
centroidal dynamics [6]. These methods, although powerful,
do not account for the full-order dynamics of the system.

Alternatively, the hybrid zero dynamics (HZD) framework
reduces the full-order dynamics to a lower-dimensional zero
dynamics manifold, through which stability of the over-
all system can be certified. This is accomplished by first
characterizing walking as a hybrid system with continuous
dynamics and discrete state jumps. The HZD framework then
uses Lyapunov methods to guarantee stability of the entire
hybrid system [7]–[9]. This approach has been demonstrated
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Fig. 1. Through 50 iterations of experiments, the proposed combination
of preference-based learning and HZD optimization transforms failed gaits
into robust walking on the AMBER-3M robot with a pair of compliant legs.

for walking [10]–[12], running [13], and quadrupedal loco-
motion [14]. To accomplish experimental success, however,
one needs more than the theoretical stability guarantees —
one must achieve robustness against unmodeled dynamics,
which is especially difficult for model-based methods such
as the HZD framework. This “last-mile mission” was histor-
ically solved by intensive parameter tuning, an arduous and
nonintuitive process which inevitably affects the scalability
of translating theory to hardware in a practical setting.

To circumvent this engineering empiricism, the field of
machine learning has approached bipedal locomotion from
different perspectives, including reinforcement leaning and
imitation learning. Reinforcement learning simplifies the
process of “learning to walk” [15] without prior knowledge
[16]–[19], but because this methodology relies on a carefully
crafted reward function, the behavior is exclusively deter-
mined by its construction. This motivates the second method,
imitation learning, which infers the underlying reward func-
tion from expert demonstrations [20]–[22]. While both meth-
ods have demonstrated promising results, they heavily rely
on physical engines such as Bullet [23], MuJoCo [24], and
RaiSim [25]. As realistic as these rigid-body-dynamics based
simulation environments have become, they still struggle
with rough-terrain dynamics such as elastic impacts, slipping
contacts, and granular media. These differences become more
apparent when transferred to real-world systems.

As opposed to relying on just one field, this paper explores
combining the successes of both: the formality of stability
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from control theory and the ability to learn the relationship
between complex parameter combinations and their resulting
locomotive behavior from machine learning. This is accom-
plished by building upon our previous results [26], [27]
and systematically integrating preference-based learning with
gait generation via HZD optimization. The result is optimal
walking on hardware based only on pairwise preferences
from the operator (i.e. the user prefers gait A over gait B).
We demonstrate the power of this framework through two
experiments on a modular biped, AMBER-3M, shown in Fig.
1. In both experiments, stable, robust, efficient, and visually
appealing walking is achieved on hardware in fewer than 50
iterations, with no reliance on a simulation environment.

II. HZD GAIT GENERATION

The underlying control scheme of the proposed learning
framework is based around two concepts: (1) hybrid zero
dynamics (HZD) [7], [8], which theoretically addresses lo-
comotion stability, and (2) trajectory optimization, namely
direct collocation [28], which produces a walking trajectory
(gait) that encodes the stability of the closed-loop system.
We will briefly review this methodology in this section.

A. Hybrid Zero Dynamics Method
Inherently, locomotion consists of alternating sequences of

continuous-time dynamics and discrete-time impacts, which
can be encoded as a hybrid control system [29]. Consider a
robotic system with the configuration coordinates q ∈ Q ⊂
Rn and the full system state x = (q, q̇) ∈ X ⊂ TQ. The
continuous-time control system is given by:

D(q)q̈ +H(q, q̇) = Bu, (1)

where D(q) ∈ Rn×n is the inertia matrix, H(q, q̇) ∈ Rn
is the drift vector, B ∈ Rn×m is the actuation matrix, and
u ∈ U ⊂ Rm is the input. Here we present the “pinned”
model for notional simplicity, but the “unpinned model”
could similarly be considered [30]. Note that m < n for
underactuated robotic systems, such AMBER-3M.

As the robot’s foot strikes the ground, an instantaneous
change in velocity occurs causing the system state to sud-
denly jump. Taking z : Q → R to represent the height of the
swing foot, the admissible states are given by the domain:
D := {(q, q̇) ∈ X | z(q) ≥ 0} ⊂ X . The region where
this instantaneous change in velocity occurs is given by the
switching surface S ⊂ D defined by:

S := {(q, q̇) ∈ X | z(q) = 0, ż(q, q̇) < 0}. (2)

Taking x := (q, q̇), the discrete dynamics during this impact
event are encoded by the reset map ∆ : S → X , defined as:

x+ = ∆(x−), x− ∈ S (3)

where the x+ and x− denote the pre- and post-impact state
respectively. Finally, one can convert (1) to a control system:
ẋ = f(x) + g(x)u, where when combined with (2) and (3)
yields the single-domain hybrid control system:

HC =

{
ẋ = f(x) + g(x)u x /∈ S
x+ = ∆(x−) x− ∈ S,

(4)

which can be extended to the multi-domain case; for more
details on both single and multi-domain models, refer to [7].

The HZD framework reduces the system HC to a lower-
dimensional system. Consider the zero dynamics surface:

Zα := {x ∈ D | y(q, α) = 0, ẏ(q, α) = 0},

where y : Q → Rm is defined through the following outputs
or virtual constraints (encoding desired behavior):

y(q, α) = ya(q)− yd(τ(q), α). (5)

Here, ya(q) is the actual measured output of the system,
and yd(τ(q), α) is the desired output. For the following
discussion, we take the desired output to be parameterized
by the state-based timing variable τ(q) and a collection
of Bézier coefficients α. Through the use of a stabilizing
controller u∗(x), e.g., given by feedback linearization or
control Lyapunov functions [8], [9], [29], one can drive y →
0 exponentially. The end result is the closed-loop dynamics:
ẋ = fcl(x) = f(x) + g(x)u∗(x). In order to guarantee
stability of a hybrid system, a hybrid invariance condition
must be satisfied, encoded through the HZD condition:

∆(S ∩ Zα) ⊂ Zα. (6)

The remaining step to achieving hybrid invariance is to
generate α such that the HZD condition is satisfied.

B. Trajectory Optimization

To obtain α, we use a direct collocation based optimization
algorithm, FROST [28], which has been previously utilized
for efficient gait generation of walking [11], running [13],
and quadrupedal locomotion [31]. Direct collocation is an
implicit Runge–Kutta method to approximate the numerical
solution of certain dynamical systems, namely differential-
algebraic equations and partial differential equations. The
trajectory optimization problem is stated as:

HZD Optimization:
{α∗, X∗} = argmin

α,X
Φ(X)

s.t. ẋ = fcl(x) (Closed-loop Dynamics)
∆(S ∩ Zα) ⊂ Zα (HZD Condition)
Xmin � X � Xmax (Decision Variables)
cmin � c(X) � cmax (Physical Constraints)
amin � p(X) � amax (Essential Constraints)

where X = (x0, ..., xN , T ) is the collection of all decision
variables with xi the state at the ith discretization and T
the duration, Φ(X) is the cost function, and c(X) is the set
of physical constraints on the optimization problem. These
physical constraints are included in every gait generation
framework to encode the physical laws of real-word, such
as the friction cone condition, workspace limit, and motor
capacity [12]. In this work, we specify a specific subset
of physical constraints as p(X), which we term essential
constraints and discuss further in Sec. II-C. With this op-
timization formulation, we can use nonlinear programming
(NLP) solvers, such as IPOPT [32], to efficiently synthesize
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an optimal walking gait. The end result is a stable periodic
solution to the walking dynamics that is parameterized by
some static set of Bézier coefficients α∗.

C. Essential Constraints
Expert operators typically tune amin ∈ Rv and amax ∈ Rv

of (Essential Constraints) in the hopes of guiding the HZD
optimization towards a solution that maximizes the operators’
subjective metric of “good” walking. Since the construction
of these constraints is often essential towards achieving
experimental robustness, we term them essential constraints.
Traditionally, essential constraints consist of gait features
such as average velocity, step length, foot clearance, and
impact velocity. Often, practitioners derive intuition on how
to shape essential constraints from years of experience. One
example of how this intuition relates to stability is Raibert-
type controllers [2], which tune the relationship between step
length and walking velocity based on a simplified model.

In this paper, we present a systematic approach towards
tuning essential constraints using preference-based learning.
To do so, we reformulate (Essential Constraints) as:

a− δ � p(X) � a+ δ,

where a ∈ Rv consists of v constraint values, and δ ∈ Rv
defines the equality tolerance for each constraint. Thus, the
goal of the learning is to identify a∗ := argmaxa∈Rv U(a),
where U : Rv → R is the underlying utility function. In our
work, we construct the components of a to be:

1) average forward velocity of the torso (m/s)
2) phase variable value at which to enforce minimum foot

clearance, τc
3) minimum nonstance foot clearance enforced at τc (m)
4) downward velocity enforced at impact (m/s)
5) step length, i.e. the forward distance between swing

foot and stance foot at impact (m),
which are defined over the search space of possible parameter
combinations A, a discretization of Rv , as given in Table I.

D. Benefits of Preference-Based Learning
The traditional hand-tuning process requires a human

operator to make assumptions about the underlying utility
function U , which is difficult given the following: the non-
intuitive relationship between parameter combinations and
the resulting experimental behavior; and the need to ac-
count for numerous factors including stability, robustness
to perturbations/model uncertainty, and visual appearance.
Additionally, U admits no obvious mathematical description;
eliminating the use of reward-based tuning methods.

Alternatively, we propose the use of preference-based
learning to identify a∗ using only pairwise preferences,
which take advantage of a human’s natural ability to combine
many factors into a single judgment of “better” or “worse”.
Although this requires the human to provide feedback, there
are two major benefits of our approach: 1) the duration of
the tuning process is reduced significantly compared to hand-
tuning; and 2) pairwise preferences are much easier for a
naïve user to provide compared to manually navigating the
complex search space of parameter combinations.

TABLE I
ESSENTIAL CONSTRAINT ACTION SPACE

Essential Constraint Bounds [amin, amax] Disc. d
Average Forward Velocity (m/s) [0.3, 0.6] 0.05

Clearance Tau (·) [0.4, 0.7] 0.1
Minimum Foot Clearance (m) [0.05, 0.19] 0.02

Impact Velocity (m/s) [−0.8,−0.2] 0.1
Step Length (m) [0.2, 0.4] 0.05

Algorithm 1 LINECOSPARNLP
1: Construct A using amin, amax, and d
2: Initialize datasets {D0,E0 = ∅}
3: for all i = 1, . . . , N do
4: if i == 1 then
5: Obtain a1 = {a11, ...., an1 } as uniform-random
6: else
7: Generate Li := random line through a∗i−1

8: Construct subset Si = Li ∪Ei−1

9: Approximate P(USi |Di−1) as N (µSi ,ΣSi)
10: Draw k = 1, ..., n samples: fk ∼ N (µSi ,ΣSi)
11: Obtain ai = {aki = argmax

a∈Si

fk(a)|k = 1, ...n}

12: end if
13: Execute outputs of NLP for ai on the system
14: Append executed actions: Ei = Ei−1 ∪ ai
15: Query operator for preference feedback pi
16: Append preference feedback: Di = Di−1 ∪ pi
17: Approximate P(UEi |Di) as N (µEi ,ΣEi)
18: Update a∗i = argmax

a∈Ei

µEi(a)

19: end for

III. LEARNING FRAMEWORK

To learn the optimal action a∗ in as few iterations
as possible, we introduce a framework built around
a high-dimensional preference-based learning algorithm
LINECOSPAR [27] that learns a Bayesian posterior over the
utility function U . The new framework, LINECOSPARNLP,
still relies on pairwise preferences obtained from a human
observing the experimental behavior of the robot, but embeds
the learning directly into an HZD optimization problem,
eliminating the need for a pre-computed gait library. We will
first present LINECOSPARNLP, and then explicitly discuss
the differences between the two frameworks.

A. The LINECOSPARNLP Algorithm

The procedure of the LINECOSPARNLP algorithm is
shown in Alg. 1. First, to set up the learning problem, upper
and lower bounds on a ∈ Rv along with the granularity
of discretization d ∈ Rv+ are chosen by the operator. This
leads to the discrete search space A with |A| =

∏
d. The

corresponding set of utilities is defined as U : A→ R, with
UB used to denote the restriction of U on B ⊂ A.

Each iteration i of the algorithm is as follows. First, n
actions, denoted as the set ai := {a1i , . . . , ani } ∈ Rv×n,
must be selected to give to the NLP. The parameter n can
be changed depending on how many actions the operator
would like to sample in each iteration. Because the actions
are compared in pairs, n actions equates to m =

(
n
2

)
pairwise preferences. In the first iteration, a1 is constructed
using uniform-random actions. During every subsequent it-
eration, the algorithm utilizes a Self-Sparring approach [33]
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to Thompson sampling which is a sample-efficient sampling
method for regret-minimization. In general, to select n
actions, Thompson sampling works by drawing n samples
from a given distribution, such as the normal distribution
N (µB ,ΣB) over actions a ∈ B ⊂ A:

fk ∼ N (µB ,ΣB) ∀k = 1, . . . , n, (7)

and selecting the actions that maximize the samples:

aki = argmax
a∈B

fk(a) ∀k = 1, . . . , n. (8)

To be computationally tractable, LINECOSPARNLP per-
forms Thompson sampling only considering the subset of
actions Si ⊂ A. This subset is defined as Si := Li ∪Ei−1,
with Ei−1 being the dataset of previously executed actions
and Li ⊂ A being a random linear subspace which intersects
the best action from the previous iteration, a∗i−1. Using
this subset, Thompson sampling draws n samples from
the posterior distribution P(USi |Di−1), where Di−1 is the
preference dataset from the previous iteration. The posterior
is modeled as proportional to the product of the preference
likelihood and the Gaussian prior [34]:

P(USi
|Di−1) ∝ P(Di−1|USi

)P(USi
). (9)

The Gaussian process prior is computed as:

P(USi) =
exp

(
− 1

2
USi(Σ

pr
i )−1USi

)
(2π)

|Si|
2 |Σpr

i |1/2
, (10)

where Σpr
i ∈ R|Si|×|Si| with [Σpr

i ]j,k = K(ajSi
, akSi

) for the
set of actions aSi in Si, and K being a kernel of choice
(taken as a squared exponential kernel in this work). The
preference likelihood function is computed as:

P(Di−1|USi) =

i−1∏
j=1

n∏
k=1

g

(
U(akj )− U(akj )

cp

)
, (11)

where g : R → (0, 1) is a monotonically-increasing acti-
vation function, and cp > 0 models the expected noisiness
of the preference feedback. In this work, we select g(x) :=

1
1+e−x to be the heavy-tailed sigmoid function because it was
empirically found to improve performance [27].

Equipped with (10) and (11), the posterior (9) can then
be estimated via the Laplace approximation as in [34] which
yields a multivariate Gaussian, N (µSi

,ΣSi
). Finally, apply-

ing this distribution to (7) and (8) yields ai. These sampled
actions are then given to the NLP, whereby corresponding
gaits are generated, the outputs are executed on the robot, and
ai is appended to Ei. We define the set of actions executed
on hardware up to and including those sampled in iteration
i as Ei := {a1, . . . ,ai} ∈ Rv×n×i ⊂ A.

After demonstrating the gaits on hardware, the human
operator is queried for m pairwise preferences, denoted as
pi = {p1i , . . . , pmi } ∈ Rm. The collection of all preference
feedback up to and including iteration i is denoted Di :=
{p1, . . . ,pi} ∈ Rm×i. Note that it is possible for pi = ∅
when all sampled actions do not converge, or when the user
chooses to give feedback of “no preference”.

Experimental walking for each             

Preference-Based Learning
HZD Optimization

for each                           

Fig. 2. The experimental procedure is illustrated in terms of each iteration
i with n denoting the number of gaits compared in each iteration. The
experiments presented in this work used n = 2. Using this notation, the set
of n actions given to the HZD optimization is denoted: ai = {a1i , . . . , ani }.
The resulting n sets of Bézier coefficients given to the controller are denoted
αi = {α1

i , . . . , α
n
i }.

Lastly, the algorithm updates its belief of a∗ by modeling
the posterior again using Di. Since obtaining the posterior
over the entire search space A for high-dimensional action
spaces has been shown to be computationally intractable
[27], the posterior is only updated over Ei:

P(UEi |Di) ∝ P(Di|UEi)P(UEi), (12)

which is approximated using the same procedure as for
P(USi

|Di−1) and applying the Laplace approximation to
obtain the distribution N (µEi ,ΣEi). The algorithm’s belief
of the optimal action after iteration i is finally updated as:

a∗i = argmax
a∈Ei

µEi
(a).

B. Changes to LINECOSPAR for use with a NLP

Three notable changes were made to the algorithm
LINECOSPARNLP in comparison to LINECOSPAR. First,
the LINECOSPARNLP selects Li to intersect a∗i−1 as
opposed to a∗i−2 which leverages more recent preference
feedback. This change requires two posterior updates in each
iteration but results in fewer required iterations. Second,
LINECOSPAR uses a buffer method to compare executed ac-
tions with previously executed actions which results in higher
sample-efficiency. However, when considering preference-
based learning towards gait generation, it is important to
account for the computation time required to obtain gaits. For
this reason, we modify the LINECOSPARNLP algorithm
to sample and query n > 1 actions in each iteration. This
results in worse sample-efficiency, but allows for batched gait
generation that enables the generated gaits to be executed on
hardware back to back. Lastly, in LINECOSPAR, coactive
feedback, otherwise known as user suggestions, is also added
to the dataset Di to improve sample-efficiency. However,
these suggestions rely on understanding the mapping be-
tween a and U(a); because this mapping is rarely well-
understood for parameters of a nonlinear optimization prob-
lem, LINECOSPARNLP does not utilize coactive feedback.
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IV. LEARNING TO WALK IN EXPERIMENTS

We experimentally deploy LINECOSPARNLP (open-
source code: [35]) to tune the 5 essential constraints outlined
in Table I on the planar bipedal robot, AMBER-3M [36].
This custom research platform has three interchangeable
lower-limb configurations: flat-foot, point-foot, and spring-
foot. We specifically selected this platform because of its
engineering reliability [37], enabling consistent data collec-
tion to isolate the effects of various gaits in the learning
process. The controller for AMBER-3M is implemented on
an off-board i7-6700HQ CPU @ 2.6GHz with 16 GB RAM,
which computes desired torques and communicates them
with the motor drivers. The motor driver communication and
the control logic run at ∼1kHz, each on a separate core.

A. Experimental Procedure

In the experiments, walking gaits are generated by the
HZD-based method presented in Sec. II. We take ya(q) :=
qa ∈ R4 as the position of the four motorized joints of
AMBER-3M, τ(q) to be the linearized forward hip position,
and use a 5th-order Bézeir polynomial (α ∈ R4×6) to
describe the desired output trajectories. Additionally, the cost
function is selected to be the mechanical cost of transport
(MCOT), a common metric for locomotion efficiency:

MCOT =

∫ tf

t0

P (t)

mgv
dt, (13)

where P (t) =
∑4
i=1 |ui(t)q̇ai (t)| is the 2-norm sum of power.

The average optimization run time is 0.1 second per
iteration, with each gait averaging 160 iterations. The exper-
imental procedure is illustrated in Fig. 2. In our experiments,
the learning was conducted for n = 2, corresponding to
two gaits being compared in each iteration. This was chosen
because we empirically found that operators sometimes had
difficulty remembering the details of more than two gaits at a
time, leading to the most reliable preference feedback when
n = 2. Note that other applications may benefit in a higher
n, which would increase the rate of learning.

Each trial began by initializing AMBER-3M in a static
double-support configuration, starting the treadmill, and at-
tempting to push the robot into the designed periodic orbit.
If the resultant dynamics were not stable, extra precaution
was taken to give the gait the best chance at succeeding.
Once the gait reached its orbit, the robot was released
and the robustness of the gait to various disturbances was
investigated. After both gaits were executed on the physical
robot, a preference was collected from the human operator
observing the physical realization of the walking. In some
iterations, video footage was also reviewed before giving
a preference. The criteria used to determine preferences
between gaits were the following (in order of prioritization):
• Capable of walking
• Robust to perturbations in treadmill speeds
• Robust to external disturbance
• Does not exhibit harsh noise (e.g. during impact)
• Is visually appealing (intuitive judgment from operator)

Fig. 3. The final obtained utilities for the visited actions, averaged over
the two dimensions not shown on each subplot. The optimal action is
illustrated by the yellow star ([0.4399, 0.5425, 0.0759,−0.6040, 0.3190]
for AMBER3M-PF and [0.4105, 0.5930, 0.0833,−0.7020, 0.3504] for
AMBER3M-SF). The other two actions depicted in Fig. 4 are denoted with
a red circle (worst gait) and a blue square (middle gait).

B. Procedure specific to AMBER3M-PF and AMBER3M-SF

In this work, we leverage two configurations of the robot:
1) the point-foot configuration, AMBER3M-PF (1.373 m,
21.3 kg); and 2) the spring-foot configuration, AMBER3M-
SF (1.430 m, 23.5 kg) [36]. We first demonstrate the learning
framework on AMBER3M-PF, with the corresponding rigid
point-foot model used in the gait generation. To emphasize
the scalability of our method, we repeat the exact procedure
applied to AMBER3M-PF on AMBER3M-SF, but intention-
ally do not account for changes in the robot model and
instead still generate gaits assuming the rigid-body model.
Furthermore, we execute the gaits on hardware using the
same controller with unmodified gains. Historically, robots
with compliance are difficult to generate gaits for because of
the resulting complexities which include: increased degrees
of freedom of the system; the addition of a double support
domain to the hybrid dynamics; and increased stiffness
of the dynamics. Past success with compliant bipeds has
relied on sophisticated models [38]. Therefore, the fact that
our method yields stable walking despite the unmodeled
compliance highlights it’s effectiveness.

C. Results

A summary of the experimental results is illustrated in
the supplementary video [39], with additional videos and
material available at [40], and the final obtained posterior
provided with the framework code in the repository [35].

The experiment with AMBER3M-PF was run for 30
iterations and sampled 27 unique gaits. The final posterior
over the 27 executed actions is illustrated in the top row of
Fig. 3. Since gaits quickly met the first criterion of being
able to walk, preferences were mainly dictated based on the
robustness and appearance of the experimental walking. The
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Fig. 4. Gait tiles with increasing posterior utility values from left to right are shown for the the rigid model (top) and spring model (bottom). The phase
portraits of the hip (qh) and knee (qk) of the stance leg (blue) and swing leg (yellow) are shown below each corresponding gait, plotted over 10 seconds
of data. The phase portraits clearly indicate that for both AMBER3M-PF and AMBER3M-SF the gaits evolved to be more experimentally robust.

initial gaits tried on hardware, although optimal subject to the
imposed constraints, resulted in inferior trajectory tracking
and power consumption. As the algorithm progressed, the
gaits became significantly smoother, more robust to distur-
bance, and energy efficient. This is exemplified in Fig. 4
which illustrates the gaits corresponding to the minimum,
a middle, and the maximum posterior utility; the iterations
corresponding to when these gaits were first sampled is 1,
21, and 26, respectively. In Fig. 4, we note significantly
lower velocity overshoot for all of the limbs and tighter
tracking shown in the phase portraits for the gaits with higher
posterior utility. It is also interesting to note the framework’s
success at improving the efficiency of the experimental
walking: a latent property which is discernible to the human
operator even though it is not immediately measured. This
improvement is demonstrated by the MCOT values of the
three gaits in Fig. 4: 0.74, 0.95, and 0.26 respectively.

When the procedure was repeated on AMBER3M-SF,
many of the initial gaits were unable to walk due to the
unmodeled compliance. Thus, gaits exhibiting periodic walk-
ing were strongly preferred. This second experiment was
conducted for 50 iterations and sampled 37 unique gaits
with the obtained posterior illustrated in the bottom row of
Fig. 3. Again, three gaits are selected for further discussion
corresponding to the minimum, a middle, and the maximum
posterior utility values. Gait tiles and phase portraits for
these are again shown in Fig. 4. The iterations when these
gaits were first sampled are 4, 10, and 42. Once again, the
algorithm converges to gaits with superior trajectory tracking
and lower MCOT (1.16, 0.38, and 0.33, respectively).

V. CONCLUSION

In this work, we present and experimentally demon-
strate a high-dimensional preference-based learning frame-
work, LINECOSPARNLP (open-source code: [35]), specif-
ically designed for use towards HZD-based gait generation.
LINECOSPARNLP incorporates preference-based learning
with an HZD optimization problem to leverage the theoretical
benefits of HZD without the challenge of parameter tuning.
Furthermore, preference-based learning is a sample-efficient
learning method that does not require the user to mathe-
matically define a metric for “good” walking. Instead, the
framework relies on easy to provide pairwise preferences.

The success of the proposed method is demonstrated
through its ability to experimentally realize gaits that are
stable, robust to model uncertainty, robust to external pertur-
bations, efficient, and natural looking within 50 experimental
iterations, with no requirement for simulation. Furthermore,
LINECOSPARNLP achieves robust walking with unmod-
eled compliant legs, a challenging control task which histor-
ically relied on sophisticated models.

Future work includes extending this framework to more
robotic platforms, such as quadrupeds and 3D bipedal robots,
as well as improving the sample-efficiency of the framework
through additional qualitative feedback mechanisms such as
ordinal labels [41]. The experimental results presented in this
paper demonstrate the rich potential lying in the boundary
between machine learning and control theory. It is well-
known that control theory provides necessary structure to
bipedal platforms, but machine learning can play a critical
role in shaping the final behavior of the system.
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