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Abstract. This paper presents the first steps toward unifying locomo-
tion controllers and algorithms with whole-body control and manipula-
tion. A theoretical framework for this unification will be given based upon
quadratic programs utilizing control Lyapunov functions. In particular,
we will first consider output based feedback linearization strategies for
locomotion together with whole-body control methods for manipulation.
We will show that these two traditionally disjoint methods are equivalent
through the correct choice of controller. We will then present a method
for unifying these two methodologies through the use of control Lyapunov
functions presented in the form of a quadratic program. In addition, it
will be shown that these controllers can be combined with force-based
control to achieve locomotion and force-based manipulation in a single
framework. Finally, simulation results will be presented demonstrating
the validity of the proposed framework.
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1 Introduction

Robots provide a quintessential example of cyber-physical systems (CPSs); the
ability of robots, and especially humanoid robots, to perform complex dynamic
tasks requires a complete and unified understanding of dynamics, control, soft-
ware and hardware, along with their interconnection and integration. In the
context of the control of robotic CPSs, a variety of traditionally disparate ap-
proaches have been taken ranging from nonlinear control via input/output (IO)
feedback linearization through output based control [12,34], force-based con-
trol methods [7,17,30,21,31], and whole-body control methods for manipulation
[14,15,27], to name a few. Each of these methods, along with the wide variety
of other methods taken in the control of robotic systems, have proven success
in their domains of consideration. Yet combining these different approaches into
a single unified and implementable framework remains an open problem. With
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a view toward unification, this paper describes how locomotion controllers, as
described through human-inspired control methods which utilize IO feedback lin-
earization, can be unified with whole-body and multi-contact force control into
a single coherent framework given in the form of quadratic programs utilizing
control Lyapunov functions. These theoretical developments will be supported
by simulation results.

We begin by reviewing the basic background necessary to introduce these re-
sults. In particular, the robotic models considered are defined, and a review of
human-inspired control [1,2,3,4,22] is given. In the context of human-inspired
control, we obtain outputs, or virtual constraints, that represent the desired
behavior of a bipedal robot. We show how, through input/output (IO) lineariza-
tion, the dynamics of these outputs can transformed into a linear system. The
end result of this process is that the dynamics of the outputs can be chosen to
achieve convergence of these outputs to zero at a desired rate. This implies the
convergence of the robotic system to the surface defined by the zero level set
of these output functions: the zero dynamics surface. By ensuring that this sur-
face is invariant through impact, i.e., that we have hybrid zero dynamics (HZD)
[12,29,34], the end result of these control methods is provably stable locomotion.

The first result of this paper is obtained by considering whole-body control
methodologies, and specifically null-space control [14,15,27]. In the context of
the outputs associated with locomotion, we demonstrate how Jacobians can
be constructed in the case of mixed position and velocity based outputs. In
addition, by projecting the dynamics of the system down to the operational
space dynamics, we are able to show that the end result is dynamics for the
outputs that can be utilized to achieve a linear relationship between the inputs
and outputs. In more concrete terms, we establish that IO linearization and null-
space control result in equivalent constructions in terms of outputs. Building on
this idea, we then consider the case when manipulation tasks have been specified.
A procedure for merging the locomotion and manipulation tasks is given in the
context of null-space control. This method benefits from explicitly separating
the locomotion tasks and the manipulation tasks so that the manipulation tasks
do not affect the locomotion tasks. This is an advantage due to the fact that
the manipulation tasks can therefore never destabilize the robot. Conversely, it
can be a disadvantage since it does not allow for dynamic balancing between the
locomotion and manipulation tasks. For example, one may want to slightly relax
the tracking of the outputs associated with locomotion—as long as it does not
destabilize the system—in order to better achieve a given manipulation task.

The need for a dynamic way to balance multiple tasks related to locomotion,
manipulation and force control motivates the introduction of quadratic programs
(QPs) that allow for this dynamic balancing coupled with the ability to add
constraints on the evolution of the system, e.g., torque bounds. We begin by
again considering only the locomotion task, and show how the IO representation
achieved through output functions can be used to explicitly construct a control
Lyapunov function (CLF) [10,28]. Importantly, this CLF results in an inequality
that is linear in torque such that, when it is satisfied, convergence to the hybrid
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zero dynamics surface is guaranteed [5,6]. This naturally leads to the formulation
of a quadratic program (QP) in terms of torque with a constraint given by the
CLF associated with locomotion [11]. The strength of this representation is that
additional constraints can be added to the controller such as torque bounds,
moment bounds, etc., and by solving the QP the controller will naturally find the
best balance between these hard physical constraints and the control objective
of converging to the HZD surface.

To demonstrate the extensibility of the CLF based QP controller, we then ex-
tend the formulation to include manipulation tasks in the form of both position-
based tasks and force-based tasks. In these cases, additional CLFs can be added
to the QP through the form of additional constraints; these CLFs represent
the manipulation objectives in the system. The advantage of this representa-
tion is that the locomotion and manipulation tasks can be dynamically balanced
through the QP—the QP will naturally find the optimal balance between these
control objectives. In addition, we will discuss how null-space control can be ex-
pressed in this framework. Finally, we discuss force-based tasks in the presence
of multi-contact. Again, we show how these can naturally be expressed in the
context of QPs and CLFs.

These formal ideas and results are demonstrated through simulation results.
We begin by obtaining a stable walking gait for the lower body of a simple
full-body (2D) humanoid robot. As a first step, we demonstrate how this purely
lower-body controller can be embedded into the full-body robot through a QP,
with the end result again being stable walking. Taking this idea even further, we
show how manipulation and force tasks can be accomplished without modifying
the original locomotion controller. In particular, we perform the task of holding
the hand at a constant height and, more significantly, show how we can hold the
hand in contact with a wall with a desired force while simultaneously walking
with the locomotion controllers that were designed with no knowledge of the
upper body. As a final demonstration, we show the robustness of this method
through unknown rough terrain locomotion with the full-body robot.

2 Background

We begin by giving some basic terminology utilized throughout the paper. Specif-
ically, we will introduce the basic equations for a robotic system, and show how
these are converted to an affine control system (see [20,34] for additional details).

Let Q be the configuration space of a robot with n degrees of freedom, i.e.,
n = dim(Q), with coordinates q ∈ Q. For the sake of definiteness, it may be
necessary to choose Q to be a subset of the actual configuration space of the
robot so that global coordinates can be defined1, i.e., such that Q is embeddable
in R

n, or more simply Q ⊂ R
n. Consider the equations of motion for a robot

given in the general form by the Euler-Lagrange equations:

D(q)q̈ +H(q, q̇) = Bu, (1)

1 Note that at various points we will assume that matrix functions have full rank; it
may be necessary to carefully choose Q to satisfy these conditions.
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where D is the inertia matrix, H is a vector containing the coriolis and gravity
terms, and B ∈ R

n×n is the actuation matrix which determines the way in which
the torque inputs, u ∈ R

n, actuate the system. Note that here, for the sake of
simplicity, we assume full actuation (and hence a square actuation matrix, B).

In the context of control constructions, it is desirable to convert this system
to an ODE of the form:

ẋ = f(x) + g(x)u,

where x = (q, q̇) ∈ TQ ⊂ R
2n and

f(q, q̇) =

[
q̇

−D−1(q)H(q, q̇)

]
, g(q, q̇) =

[
0

D−1(q)B

]
, (2)

where 0 ∈ R
n×n is a matrix of zeros.

When modeling the bipedal robot, discrete behavior must also be considered in
conjunction with these continuous dynamics. In particular, the robotic system ex-
hibits discrete impacts when guards are reached, i.e., when contacts with the world
are created or broken [13]. The end result is that the system is a hybrid system:

H C = (D,U ,S, Δ, (f, g)), (3)

where D is the domain of the continuous dynamics, i.e., D ⊂ TQ ⊂ R
2n, U ⊂ R

n

is the set of admissible control values, S is the guard which determines when
a discrete change in the dynamics occurs, Δ determines the discrete change
in dynamics, and (f, g) is the affine control system dictating the continuous
dynamics. In particular, this implies that when (q−, q̇−) ∈ S, there exists an
impact of the form: (q−, q̇−) �→ (q+, q̇+) = Δ(q−, q̇−).

3 Human-Inspired Control for Locomotion

In the context of mobility, the control algorithms utilized in this paper build
off the framework of human-inspired control. While detailed algorithms can be
found in [1,2,3,4,23], we will outline these methods only as they relate to the con-
structions presented in this paper. We note that human-inspired control builds
upon the concept of human-inspired constraints that, when enforced with the
proper choice of parameters, provably guarantee robotic walking. These meth-
ods are applicable both in the case of under and full actuation, and have been
applied to both 2D and 3D robots to achieve walking experimentally [22,35].

Consider a human output combination: Y H = (Q, yH1 , yH2 ), consisting of the
configuration space of a robot, Q ⊂ R

n, a velocity modulating output yH1 : Q →
R, position modulating outputs yH2 : Q → R

n�−1 given by yH2 (q) = [yH2 (q)i]i∈O
with O an indexing set for yH2 , and n� the total number of position and velocity
modulation outputs. Human-inspired outputs consist of (vector) relative 1 and
2 degree output functions y1 : TQ → R and y2 : Q → R

n�−1 of the form:

y1(q, q̇) =
∂yH1 (q)

∂q
q̇ − v, (4)

y2(q) = yH2 (q)− [yCWF(τ(q), αi)]i∈O, (5)
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where y1 is the velocity-based output, e.g., based upon the center of mass or
forward position of the hip, v ∈ R the desired velocity, and y2 are the position
based outputs, e.g., a vector of outputs including things like the angle of the
stance knee, etc. In this case, yH2 (q) is the actual value of these outputs as
computed from the robot, and [yCWF(τ(q), αi)]i∈O is the desired value of these
outputs as computed from the canonical walking function:

yCWF (t, αi) = e−αi,4t(αi,1 cos(αi,2t) + αi,3 sin(αi,2t)) + αi,5,

which is simply the time-solution to a linear mass-spring damper system. Thus,
we drive the relative degree 2 outputs to the behavior of a compliant system,
mirroring methods in compliant-based control. Moreover, τ is a parametrization
of time based upon the relative 1 degree output:

τ(q) =
yH1 (q)− yH1 (q+)

v
, (6)

with yH1 (q+) the initial value of the velocity modulating output, e.g., at the be-
ginning of a step. It follows from these constructions that the control parameters
are v ∈ R and α ∈ R

n�−1×5. To provide a specific example, in the case of a 5-link
2D walking robot, n� = 5. Therefore, there are a total of 21 control parameters;
while this may appear to be a large number, the parameters are automatically
determined by a human-inspired optimization and so no tuning of parameters is
needed.

With the objective of driving y1 → 0 and y2 → 0, we create a linear in-
put/output (IO) relationship [26]. More formally, the goal is to drive the dy-
namics of the system to the zero dynamics surface:

Zv,α = {(q, q̇) ∈ TQ : y1(q, q̇) = 0, y2(q) = 0, ẏ2(q, q̇) = 0},
which depends on the parameters v and α. With this goal in mind, differentiating
the relative degree 1 output once and differentiating the relative degree 2 output
twice yields:

[
ẏ1
ÿ2

]
=

[
Lfy1(q, q̇)
L2
fy2(q, q̇)

]
︸ ︷︷ ︸

Lf

+

[
Lgy1(q, q̇)
LgLfy2(q, q̇)

]
︸ ︷︷ ︸

A

u, (7)

with L denoting the Lie derivative, and A the decoupling matrix [26]. Note that
the dependence of Lf and A on q and q̇ has been suppressed for notational
simplicity. Traditionally, in nonlinear control, this matrix is assumed to be non-
singular, in which case, we can pick:

u = A−1(−Lf + μ) (8)

for some μ ∈ R
n� resulting in [

ẏ1
ÿ2

]
= μ. (9)
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Therefore, one obtains a linear relationship between input and output. As a
result, one can drive the system to the surface Zv,α by, for example, choosing

μ =

[ −εy1
−2εẏ2 − ε2y2

]
(10)

for ε > 0; here, as ε → ∞, the speed of convergence to Zv,α increases. In
particular, it yields the output dynamics:⎡

⎣ ẏ1ẏ2
ÿ2

⎤
⎦ =

⎡
⎣−ε 0 0

0 0 I
0 −ε2I −ε2I

⎤
⎦

︸ ︷︷ ︸
Fcl

⎡
⎣y1y2
ẏ2

⎤
⎦ , (11)

with Fcl chosen so that all of the eigenvalues are located at −ε. Note that while
this choice of μ guarantees convergence, it does not achieve convergence in an
optimal fashion; this motivates later constructions related to CLFs.

It is important to note that, in the context of locomotion, the impacts Δ in
the hybrid model (3) that occur at foot strike must be considered when designing
the control parameters v and α. In particular, the impact map Δ can throw the
system away from the surface Zv,α, resulting in the system being destabilized.
With this consideration in mind, since we wish to allow the velocity-based rel-
ative degree 1 outputs to “jump” during impact, we consider the partial zero
dynamics surface:

PZv,α = {(q, q̇) ∈ TQ : y2(q) = 0, ẏ2(q, q̇) = 0}.
This surface is termed hybrid invariant, or a hybrid zero dynamics surface, if
Δ(PZv,α ∩ S) ⊂ PZv,α—that is, if the surface is invariant through impacts in
the system. Creating this invariance is the basis for human-inspired optimization:

(v∗, α∗) = argmin
(v,α)∈R×R

n�−1×5

Cost(v, α)

s.t. Δ(PZv,α ∩ S) ⊂ PZv,α (PHZD)

which automatically generates parameters v∗,α∗ that ensure invariance of this
surface while minimizing a cost, Cost(v, α), often chosen based upon human data
[1]. Detailed methods for constructing this optimization problem are given in [3],
but the main result of human-inspired control is that it automatically generates
stable periodic walking gaits.

4 Merging Locomotion and Whole-Body Control

In the context of unifying the mobility controllers with other manipulation tasks,
it is possible to associate Jacobians and null-space projections [14,15,27] to the
locomotion tasks. This allows for the development of a controller that will priori-
tize locomotion and achieve the requested manipulation tasks with the remaining
degrees of freedom of the system. Before developing this idea, it is necessary to
note that the constructions based upon IO linearization can be reframed in an
equivalent manner in the context of null-space control.
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4.1 Equivalence between IO and Null-Space Control for Mobility

Consider the outputs y1 and y2 constructed in the previous section (see (4) and
(5)). These can be viewed as two separate tasks: one for velocity regulation, and
one that drives the remaining degrees of freedom to the system to the partial
hybrid zero dynamics surface PZv,α.

Define the Jacobians associated with velocity and position modulating tasks,
y1(q, q̇) and y2(q), as:

J1(q, q̇) :=
∂y1(q, q̇)

∂q̇
, J2(q) =

∂y2(q)

∂q
.

Differentiating the relative 1 degree task, y1, once and the relative 2 degree task,
y2, twice yields:

[
ẏ1
ÿ2

]
=

[
J1(q, q̇)
J2(q)

]
︸ ︷︷ ︸

J�

q̈ +

[
∂y1(q,q̇)
∂q

J̇2(q, q̇)

]

︸ ︷︷ ︸
J̇�

q̇. (12)

For simplicity of notation, we will now suppress the dependence of matrices on
q and q̇.

Through these constructions, we have a Jacobian J� ∈ R
n�×n associated with

the locomotion task. This allows for the construction of a pseudo-inverse for the
locomotion task given by:

J̄� = D−1JT� [J�D
−1JT� ]

−1.

This is a specific example of a right pseudo-inverse for J� and therefore satis-
fies: J�J̄� = I. In addition, the null-space projection, N�, associated with these
Jacobians is given by:

NT
� = [I − JT� J̄

T
� ].

The Jacobian used to describe the locomotion task can be used to project down
to the locomotion dynamics, even in the case when the full-order robot dynamics
are of a much larger dimension, i.e., in the case when locomotion is described
only for the lower-body, while the robot consists of both a lower and upper body.
In particular, the locomotion dynamics are given by choosing:

u = JT� u�

for some u� ∈ R
n� , wherein it follows that, by applying the left pseudo-inverse

for JT� , given by J̄T� , one obtains:

J̄T� (D(q)q̈ +H(q, q̇)) = J̄T� BJ
T
� u�,

where, as long as the locomotion task is consistent with the actuation in the
system, J̄T� BJ

T
� is invertible; for example, in the case of full actuation and in

the proper coordinates B = I and so J̄T� BJ
T
� = I. Defining

D� = (J�D
−1JT� )

−1, H� = J̄T� H −D�J̇�q̇, B� = J̄T� BJ
T
� , (13)
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yields

D�

[
ẏ1
ÿ2

]
+H� = B�u�

which yields dynamics for the locomotion outputs. Picking

u� = B−1
� (D�μ� +H�) (14)

results in [
ẏ1
ÿ2

]
= μ�. (15)

exactly as in the case of IO linearization, i.e., we arrive at exactly the same form
as given in (9). Therefore, one can pick μ� exactly as in (10) to achieve the same
convergence objectives. More formally, we have established the following result:

Theorem 1. For a robotic system with dynamics expressed as (1) and (2) with
outputs of the form (4),(5), the control laws for IO linearization (8) and null-
space control (14):

u = A−1(−Lf + μ)

u = B−1
� (D�μ+H�)

yield equivalent output dynamics of the form:
[
ẏ1
ÿ2

]
= μ. (16)

4.2 Merging Locomotion with Manipulation

The advantage to the null-space formulation, as opposed to the IO approach,
is that, although the two are equivalent as established by Theorem 1, in the
null-space representation there is a well-defined null-space that can be utilized to
ensure that any tasks performed on the upper body do not destabilize locomotion
and/or balance. Let a manipulation task, or collection of manipulation tasks, be
represented by a set of outputs ym(q) ∈ R

nm . Defining the Jacobian for these
tasks by Jm we obtain (as in the case of locomotion):

ÿm = J̇mq̇ + Jmq̈

and the left pseudo-inverse for JTm, given by J̄Tm, can be again constructed in this
case. This allows us to define the corresponding control law:

u = JT� u� +NT
� J

T
mum,

which guarantees that manipulation tasks do not interfere with locomotion and
balance. Using, J̄Tm, we can again project down to the dynamics for manipulation
expressed as:

Dmÿm +Hm = Bm,�u� +Bm,mum,
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where Dm and Hm are defined as in (13) with the subscripts changed from � to
m and

Bm,m = J̄TmBN
T
� J

T
m, Bm,� = J̄TmBJ

T
� ,

with the locomotion controllers affecting the manipulation controllers via Bm,�.
Begin by assuming that the manipulation tasks are consistent with the loco-

motion tasks; formally, this is characterized by Null(NT
� J

T
m) = ∅. In this case,

Bm,m is nonsingular and, as in the case of locomotion, we can again shape the
manipulation dynamics to be any desired dynamics. To see this we can pick

um = B−1
m,m(Dmμm +Hm −Bm,�u�)

yielding:
ÿm = μm.

If, for example, the goal was to drive ym → 0, one need only pick

μm = −2εẏm − ε2ym. (17)

5 Implementation through Quadratic Programs

A method for achieving convergence for both the locomotion tasks and manip-
ulation tasks was presented in the previous sections. Specifically, μ� and μm
were chosen in (10) and (17) such that y� = (y1, y2) → 0 and ym → 0 expo-
nentially. Yet this specific choice is in no way optimal for achieving convergence
since it forces the outputs to evolve according to pre-specified dynamics that
may not be consistent with the natural dynamics of the system. Therefore, we
present a method for achieving convergence through control Lyapunov functions
that give the desired convergence without explicitly choosing output dynamics.
This not only gives optimal convergence (with respect to controllers of minimum
norm), but proves much more robust to disturbances. In addition, this control
methodology can be converted to a quadratic program wherein additional phys-
ical constraints can be added to the controller construction. Additional details
on the mathematics behind these constructions can be found in [5,6,11].

It is important to note that there are numerous QP-based formulations of
feedback control laws. A prime example is model predictive control (MPC)
[8,9,19,33], but other methods include LQR-trees [32], whole-body control meth-
ods that enforce constraints through LQPs and QPs [25,24], and QPs for dynamic
balancing [30,31], to name only a few. The fundamental differentiator between
existing methods and the proposed method is that control objectives are repre-
sented by inequality constraints through CLFs, allowing them to be dynamically
balanced with each other and with physical constraints.

5.1 Quadratic Programs for Locomotion

The IO feedback controller results in dynamics of the form given in (16). There-
fore, if we define the vector η = (y1, y2, ẏ2) ∈ R

2n�−1, (16) can be equivalently
written as a linear control system:



228 A.D. Ames and M. Powell

η̇ =

⎡
⎣0 0
0 I
0 0

⎤
⎦

︸ ︷︷ ︸
F

η +

⎡
⎣1 0
0 0
0 I

⎤
⎦

︸ ︷︷ ︸
G

μ. (18)

In the context of this control system, we can consider the continuous time alge-
braic Riccati equations (CARE):

FTP + PF − PGGTP +Q = 0 (19)

for Q = QT > 0 with solution P = PT > 0. One can use P to construct a
exponentially stabilizing control Lyapunov function (ES-CLF) that can be used
to stabilize the output dynamics (18) exponentially [6]. It is important to note
that if we wish to exponentially stabilize at a rate ε > 0, we would instead
construct a rapidly exponentially stabilizing control Lyapunov function (RES-
CLF) as detailed in [6]; this can be easily achieved utilizing P , but we forgo
the construction in this paper for simplicity of exposition—all presented results
apply equally to ES-CLFs and RES-CLFs.

Defining V (η) = ηTPη, it is easy to verify that this is a ES-CLF. In particular,
it follows that

V̇ (η) = LfV (η) + LgV (η)μ

with

LfV (η) = ηT (FTP + PF )η,

LgV (η) = 2ηTPG.

The goal is exponentially stabilize η to zero. In other words, we wish to find μ
such that:

LfV (η) + LgV (η)μ ≤ −γV (η)

for some γ > 0. In addition to simply satisfying this inequality, we could search
for μ that does this in an optimal fashion:

m(η) = argmin{‖μ‖ : ψ0(η) + ψT1 (η)μ ≤ 0} (20)

where

ψ0(η) = LfV (η) + γV (η), (21)

ψ1(η) = LgV (η)T .

The controller m(η) that minimizes the control effort required to achieve expo-
nential convergence is termed the min-norm controller [10], and can be stated
in close form as:

m(η) =

{
− ψ0(η)ψ1(η)
ψ1(η)Tψ1(η)

if ψ0(η) > 0

0 if ψ0(η) ≤ 0
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While the min-norm controller, m, can be computed in closed form, it is im-
portant to note that this closed form solution is the solution to the quadratic
program (QP):

m(q, q̇) = argmin
μ∈R

n�

μTμ (22)

s.t. ψ0(q, q̇) + ψT1 (q, q̇)μ ≤ 0 (CLF)

where the the optimization problem is now expressed in terms of (q, q̇) since η
is a function of (q, q̇). The end result of solving this QP is the control law for
locomotion:

u(q, q̇) = A−1(q, q̇)(−Lf (q, q̇) +m(q, q̇)).

There are numerous advantages to this formulation of the problem, some of
which will be developed throughout the rest of this section. Yet the most imme-
diate advantage, as first discovered in [11], is that torque bounds can be directly
implemented in this formulation where, as opposed to thresholding, the optimal
control value that respects the torque bounds can be found. This is achieved
by relaxing the constraints (CLF) and penalizing for this relaxation. In particu-
lar we consider the locomotion quadratic program (where we now suppress the
dependence of functions on (q, q̇)) first formulated in [11]:

argmin
(δ,μ)∈R

n�+1

pδ2 + μTμ (L-QP)

s.t. ψ0 + ψT1 μ ≤ δ (CLF)

A−1(−Lf + μ) ≤ umax (Max Torque)

−A−1(−Lf + μ) ≤ umax (Min Torque)

where p > 0 is a large value that penalizes violations of the CLF constraint, and
umax are maximum torque values (in vector form).

5.2 Quadratic Programs for Locomotion and Manipulation

The method for obtaining control laws through CLFs, and specifically QPs, can
be easily extended to include mobility tasks, even in the case of manipulation
tasks that are not necessarily consistent with the mobility tasks. Before develop-
ing this, it is necessary to discuss how mobility tasks are unified with locomotion
in the context of IO control.

Given the set of outputs associated with manipulation, ym, we can differenti-
ate these outputs twice and combine with (7) to obtain:

⎡
⎣ ẏ1
ÿ2
ÿm

⎤
⎦ =

⎡
⎣ Lfy1(q, q̇)
L2
fy2(q, q̇)

L2
fym(q, q̇)

⎤
⎦

︸ ︷︷ ︸
Lf

+

⎡
⎣ Lgy1(q, q̇)
LgLfy2(q, q̇)
LgLfym(q, q̇)

⎤
⎦

︸ ︷︷ ︸
A

u. (23)
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Assuming that A is invertible, we can again utilize the controller u = A−1(−Lf+
μ) to obtain equations of the form:

η̇� = F�η� +G�μ�,

η̇m = Fmηm +Gmμm,

where η� = (y1, y2, ẏ2) ∈ R
2n�−1, ηm = (ym, ẏm) ∈ R

2nm , and μ = (μ�, μm) ∈
R
n�+nm . For each of these linear control systems, we can construct control Lya-

punov functions V�(η�) = ηT� P�η� and Vm(ηm) = ηTmPmηm by solving the CARE
(19) for (F�, G�) and (Fm, Gm), respectively. This results in the CLF inequalities:

ψ�0 + (ψ�1)
Tμ� ≤ 0

ψm0 + (ψm1 )Tμm ≤ 0

defined as in (20). The top inequality ensures exponential convergence of the
locomotion outputs (tasks), and the bottom inequality ensures exponential con-
vergence of the manipulation outputs (tasks).

Since the manipulation tasks may not be consistent with the locomotion tasks,
A may not necessarily be invertible. Because it may not be possible to calculate
u from μ as in (8), we can convert the QPs (22) and (L-QP) into QPs that are
functions of u and do not require A to be inverted. By noting that Au = −Lf+μ
it follows that:

μTμ = uTATAu + 2LTfAu+ LTf Lf .

Therefore, the quadratic program combining locomotion and manipulation is
expressed as:

argmin
(δ�,δm,u)∈Rn+2

p�δ
2
� + pmδ

2
m + uTATAu+ 2LTf Au (L+M-QP)

s.t. ψ�0 + (ψ�1)
T (A�u+ Lf) ≤ δ� (Locomotion CLF)

ψm0 + (ψm1 )T (Amu+ Lf ) ≤ δm (Manipulation CLF)

where p�, pm > 0 are penalties for CLF violations and

A� =

[
Lgy1(q, q̇)
LgLfy2(q, q̇)

]
, Am =

[
LgLfym(q, q̇)

]
.

There are numerous important advantages to this representation of a whole-body
controller:

– It does not require A to be invertible. Therefore, conflicting (or inconsistent)
locomotion and manipulation tasks can be defined in this formulation.

– In the case of inconsistent locomotion and manipulation tasks, there are two
CLFs—one for locomotion and one for manipulation. These are each relaxed,
so in the case of conflicting constraints where it is not possible to achieve
both tasks at the same time, one can adjust the penalty values to prioritize
one task over the other.
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– Note that removing the relaxations ensures simultaneous exponential con-
vergence of both tasks, but can result in infeasibility of the QP.

– Torque bounds can easily be added to this QP (as in (L-QP)). In this case,
the constraints to (L+M-QP) become:

u ≤ umax (Max Torque)

− u ≤ umax (Min Torque)

– Finally, this representation of the controller allows for force-based tasks and
multi-contact to be added to the QP as will be discussed in the next section.

5.3 Quadratic Programs with Null-Space Control

Null-space control methods can be easily subsumed into the whole-body QP
presented in (L+M-QP). Using the notation of the previous section, we have:

u = JT� u� +NT
� J

T
mum.

Therefore, the equations of motion (1) can be written as

D(q)q̈ +H(q, q̇) =
[
BJT� BNT

� J
T
m

]
︸ ︷︷ ︸

̂B(q)

[
u�
um

]
︸ ︷︷ ︸

û

.

In this case, one obtains new equations of motion:

ẋ = f(x) + ĝ(x)û

where f is as originally defined in (2) and

ĝ(q, q̇) =

[
0

D−1(q)B̂(q)

]
. (24)

This results in Â as obtained in (23), but with g replaced by ĝ. The quadratic

program (L+M-QP) can thus be utilized by replacing A with Â.
It is important to note that this formulation has both advantages and disad-

vantages. The advantage is that it limits the manipulation tasks so that they
only act in the null-space of the locomotion task thus preventing conflicts. This
is also the disadvantage—it does not allow for dynamic weighting of the tasks as
can be achieved through control Lyapunov functions in the case when null-space
projections are not used.

6 Force-Based Multi-contact Tasks

Extending beyond locomotion and manipulation, it is necessary to consider con-
trollers that are able to accomplish force-based multi-contact tasks. In the con-
text of traditional nonlinear control methods such as IO linearization, the fact
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that this results in over-actuation requires the outputs to be explicitly chosen
so that they do not conflict with the external forces being applied to and by the
system. In addition, since the number of outputs is necessarily less than the de-
grees of actuation, a priori optimization is needed to distribute the torques [16].
This is non-ideal from both a control and implementation perspective. Therefore,
motivated by existing methods for force-based control [17,31,7,21], we present
a method for handling force-based multi-contact tasks directly through the QP
based formulation presented in this paper. In particular, rather than first con-
straining the dynamics based upon holonomic constraints representing mult-
contact, we consider the unconstrained dynamics and allow for the dynamics
to be constrained in the QP—simultaneously, we enforce CLF associated with
locomotion and manipulation. This allows for a holistic approach to control (for
locomotion and manipulation), multi-contact and force-based tasks, all of which
can be formulated in a single QP.

6.1 Contact Constraints

Consider a vector of holonomic constraints: h(q) = 0, with h(q) ∈ R
nc . Defining

the Jacobian Jh(q) = ∂h(q)
∂q , the holonomic constraints are enforced through

constraint (or contact) forces F ∈ R
nc which are enforced through the dynamics

via:

D(q)q̈ +H(q, q̇) = Bu+ JTh F, (25)

where JTh F projects the contact wrench into joint-space coordinates. Note that in
this case, the dynamics describe the “unpinned” model, i.e., they are expressed in
terms of generalized coordinates (unlike the previous case in which the dynamics
were implicitly given in body (or joint) coordinates where the constraint forces
where a priori assumed to be satisfied).

For the constraint forces, F , to be valid, they must satisfy the following equal-
ities and inequalities:

D(q)q̈ +H(q, q̇) = Bu+ JTh F, (26)

J̇hq̇ + Jhq̈ = 0, (27)

A(F ) ≥ 0, (28)

where A(F ) ∈ R
na is a set of admissibility constraints on the reaction wrench

[13] which ensure physical validity of the model, e.g. positive normal force and
friction constraints.

Traditionally, in modeling the robotic system, q̈ in (26) is explicitly solved
and substituted into (27), yielding:

J̇hq̇ + JhD(q)−1(Bu+ JTh F −H(q, q̇)) = 0. (29)

Rearranging terms gives an explicit expression for the constraint forces:

F = (JhD(q)−1JTh )
−1(JhD(q)−1(H(q, q̇)−Bu)− J̇hq̇) (30)
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which can be substituted back into (25) to yield the constrained dynamical
system. This method ensures that (26) and (27) are satisfied for all control inputs
u; however, there is no guarantee that either (28) is satisfied, i.e., it implicitly
assumes that the constraint forces are valid.

6.2 Quadratic Program Formulation

With a view toward formulating contacts and force-based tasks in the QP frame-
work presented, the constrained equations of motion (25) can be written as:

D(q)q̈ +H(q, q̇) =
[
B JTh

]
︸ ︷︷ ︸
B(q)

[
u
F

]
︸ ︷︷ ︸
u

. (31)

Noting that (31) takes the same general form of the Euler-Lagrange equations
as (1), A can be calculated utilizing g obtained in a similar fashion to (24). The
end result is the input/output relationship

Au = (−Lf + μ). (32)

This allows for the Contact Force QP formulation given by

argmin
(δ,u)∈Rn+nc+1

pδ2 + uTA
T
Au+ 2LTf Au (CF-QP)

s.t. J̇hq̇ + JhD(q)−1(Bu−H(q, q̇)) = 0 (Constrained Dynamics)

ψ0 + ψT1 (Au+ Lf) ≤ δ (CLF)

A(F ) ≥ 0 (Contact Force)

F = F d(t, q, q̇) (Desired Force)

The solution to this quadratic program, u∗, is a set of actuator torques u∗ and
manipulator contact forces F ∗ that satisfy the constrained dynamic equations,
(Constrained Dynamics), while guaranteeing that the relative degree one and
two outputs converge exponentially (CLF), and the relative degree zero, i.e.
force-based, task F d is performed (Desired Force) in a way that that is consistent
with the required contact forces (Contact Force).

There are some important points that should be made regarding this QP for
force-based multi-contact control:

– Note that one can remove the constraint (Desired Force) if the only goal is
to remain in contact with the environment.

– Compliant force control can be achieved through specific choices of F d.
– Torque constraints can easily be added to the QP through the constraints:

u ≤ umax (Max Torque)

− u ≤ umax (Min Torque)

– Additional CLFs can be added for additional manipulation tasks as in the
case of (L+M-QP).
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Fig. 1. Simulation results from one step of a steady-state robotic walking gait using
human-inspired control via the quadratic program (L-QP)

7 Simulation Results

To demonstrate the results presented in this paper, we will apply them through
a series of simulation results of progressive complexity. In particular, we will
apply the three main QPs constructed in this paper: (L-QP), (L+M-QP) and
(CF-QP). We will begin with a lower-body locomotion controller implemented
through (L-QP). This controller will then be embedded into a whole-body robot
model (without any knowledge of this whole-body model) and coupled with a
manipulation controller through (L+M-QP). The robustness of this combined
controller will be tested through rough terrain locomotion, where there is no
knowledge of the terrain. Finally, these preceding controllers will be combined
with a force-based contact task through (CF-QP).

Lower-body locomotion: Locomotion controllers were first obtained for the lower
body using human-inspired control through the methods outlined in [1,2,4]. The
walking gait, and associated outputs, were then used to find a CLF through the
methods given in [5]. This was then implemented through the QP (L-QP) with
torque bounds of 150Nm. The results are shown in Fig. 1. In particular, the walk-
ing gait is shown along with the actual and desired controller output profiles (a),
joint torques (b) and velocities (c). Note that the relative degree two outputs are
almost exactly tracked; the exception is at the beginning of the gait when it is nec-
essary to relax the CLF condition in order to satisfy the torque bounds.

Whole-body locomotion: The locomotion controller, and associated CLF, was
then embedded on the whole-body robotic model. On the upper body, outputs
were chosen that keep the arms at the robot’s side, i.e., in (5) the actual (position
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Fig. 2. Simulation results from one step of robotic walking in which a human-inspired
locomotion controller is embedded in the full body of a humanoid via the quadratic
program (L+M-QP)

modulating) outputs are the angles of the upper body and the desired outputs
are small constant values, and the associated CLF was calculated. The controllers
were then integrated through the QP (L+M-QP) in which the locomotion was
given a higher priority while the manipulation task was given a low priority
(through the choice of penalties pl and pm; that is pl >> pm). In addition,
a max torque constraint of 150 Nm was enforced. The end result is that the
robot walks, and the arms naturally swing to provide greater stability for the
locomotion task. The results are shown in Fig. 2, including: actual and desired
controller output profiles for locomotion (a), joint torques (b), and velocities (c)
of the lower body; actual and desired controller output profiles for manipulation
(d), joint torques (e) and velocities (f) of the upper body. In this case, slight
deviations from the desired outputs are seen for the lower-body outputs while
large deviations are seen for the upper-body outputs due to the prioritization of
the associated CLFs.
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Fig. 3. Simulation results displaying robustness: three steps of robotic walking in which
a human-inspired locomotion controller is embedded in the full body of a humanoid
walking over—and without knowledge of—sinusoidally varying terrain (1cm peak am-
plitude and 2π

50
cm period)

Robustness of whole-body locomotion: To demonstrate the robustness of the con-
trol method, we consider rough terrain and solve the same QP that was consid-
ered for whole-body locomotion. In this case, the robot has no knowledge of the
terrain, so the controller must dynamically compensate. The robot is able to do
so by swinging its arms more (as can be seen through the drift in the upper-body
outputs shown in Fig. 3(d)) to maintain stability of the locomotion task; this is
all done dynamically through the QP, without the user specifying this behavior.
The results of this can be seen in Fig. 3 which plots the results for three steps.

Whole-body locomotion with force-based task:As a final test of the control method,
we now consider the case when we wish to locomote and perform a force-based
task; in this case, we want the robot to push against the ceiling with a sinusoidal
force. We achieve this by solving the QP (CF-QP) with F d being a time-based
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Fig. 4. Simulation results demonstrating locomotion together with force-based manip-
ulation. The manipulation controller applies a sinusoidal force (profile shown in (g)) to
the ceiling while regulating the remaining arm joints. Locomotion and manipulation
controllers are combined in a single quadratic program (CF-QP) with control Lya-
punov function constraints enforcing contact between the left hand and the ceiling
while also specifying a desired applied force to the ceiling, strict convergence for loco-
motion outputs and relaxed convergence in upper body joint outputs, and constraints
on the admissible joint torques.
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sinusoid describing the desired force to exert on the ceiling. The end results of
this approach can be seen in Fig. 4 where the locomotion and force-based tasks
are shown to be simultaneously achieved.

8 Conclusion

This paper presented the first step toward unifying locomotion, manipulation
and force-based tasks into a single framework—quadratic programs utilizing con-
trol Lyapunov functions. The end result was a single quadratic program that can
dynamically balance all of these disparate objectives through weighted inequality
constraints. The construction of this QP was motivated theoretically and demon-
strated through simulation, with the end result being locomotion, manipulation
and force-based control on a simplified humanoid robot. The presented results
potentially have important ramifications for robotic cyber-physical systems. The
QP can be implemented as a single algorithm that includes both controllers and
the interaction of the robot with the physical world. This could allow for more
holistic implementation of controllers on physical systems, thus permitting for a
more complete understanding of their behavior and proofs of their correctness.

On both a practical and theoretic level, there are numerous areas in which to
further explore the concepts presented. Practically, the CLF based QP formu-
lation has been implemented in real-time to experimentally achieve 2D bipedal
robotic walking [11] (with control rates exceeding 1 kHz utilizing embedded op-
timization methods [18]), and similar benchmarks have been achieved using the
formalism presented in this paper for 3D walking robots. Yet, the speed of the
QP depends on the feasibility of the inequality and equality constraints, so un-
derstanding the interplay between computation time of the QP and feasibility
of the constraints is an interesting problem. This naturally motivates theoretic
research questions related to the CLF based QP formulation. In particular, the
CLF inequality constraints were relaxed to allow for solvability of the QP in the
presence of hard constraints like torque bounds—yet these relaxations can result
in drift in the control objectives and, for aggressive torque bounds, can result
in loss of convergence. Conversely, if the relaxations are removed, guarantees
on convergence can be made but the QP may become infeasible. Understanding
this interplay between proofs of correctness, solvability of the QP, and speed of
controllers running CLF based QPs form the basis for a variety of interesting
theoretic questions. All of these questions are deeply rooted in core problems
related to robotic CPSs and, therefore, promise to be fruitful areas of research.
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