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Abstract— Safety Barrier Certificates that ensure collision-free
maneuvers for teams of differential flatness-based quadrotors
are presented in this paper. Synthesized with control barrier
functions, the certificates are used to modify the nominal
trajectory in a minimally invasive way to avoid collisions.
The proposed collision avoidance strategy complements existing
flight control and planning algorithms by providing trajectory
modifications with provable safety guarantees. The effectiveness
of this strategy is supported both by the theoretical results and
experimental validation on a team of five quadrotors.

I. INTRODUCTION

Due to recent advances in the design, control, and sensing
technology, teams of quadrotors have become widely used
in aerial robotic platforms, e.g., [6], [11]. Their ability to
hover and fly agilely in three dimensional space makes
quadrotors effective tools for surveillance, delivery, precision
agriculture, search and rescue tasks, see e.g., [22]. When
teams of quadrotors are deployed to collaboratively fulfil
these higher level tasks, it is crucial to make sure that they
do not collide with each other. The focus of this paper is
to rectify the nominal flight trajectory, which is generated
with exisiting control and planning algorithms for teams of
quadrotors, in a minimally invasive way to avoid collisions.

Because of the under-actuated and intrinsically unstable
nature of quadrotors, it is often challenging to generate safe
trajectories for arbitrary tasks. An artificial potential field
approach was used in [9] to avoid inter-quadrotor collisions,
which relies on a linearized quadrotor model, i.e., near
the hovering state. Additionally, real-time trajectory gen-
eration approach, utilizing the nonlinear dynamics together
with time-optimal planning algorithm, was proposed in [6].
However, it is computationally expensive to accommodate
collision avoidance constraints when solving optimal control
problems in real time. One remedy to this problem is to
exploit the differential flatness property of quadrotors, as
introduced in [11], [23], to simplify the trajectory planning
process, while still leveraging the nonlinear dynamics of
the quadrotors. This property has been successfully used for
flight trajectory planning in cluttered environments [10], as
well as avoiding static and moving obstacles [12].
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Fig. 1: Safe certificate-based flight maneuvers. The nominal
trajectories generated with existing planning algorithms are
modified by the safety barrier certificates to avoid collisions.
The safe regions of quadrotors are modelled as rectangles to
avoid both collisions and air flow disturbances.

In contrast to the aforementioned methods, the goal of
this paper is to modify the trajectories in a provably safe
manner that is compatible with existing control and planning
techniques, while exploiting the nonlinear dynamics (allow-
ing significant deviation from hovering state and large Euler
angles) of teams of quadrotors. To achieve this objective,
all collision-free states of the quadrotors are encoded in a
safe set. Then, Safety Barrier Certificates are synthesized
based on the differential flatness property, and a class of
non-conservative control barrier functions [2], [21], [14]
are used to ensure the forward invariance of the safe set.
Control barrier functions were used in [19], [20] to avoid
static/moving obstacles for a single planar or 3D quadrotor.
And Safety Barrier Certificates have been applied to teams
of ground mobile robots as well for collision avoidance [17],
[16]. As such, in this paper, the certificates are extended to
more complicated multi-quadrotor systems.

The main contributions of this paper are threefold: 1)
Safety Barrier Certificates are developed to provably ensure
the safety of differential flatness based teams of quadrotors;
2) a strategy is developed to modify the nominal trajectory in
a minimally invasive way to avoid collisions, which is com-
patible with existing flight control and planning algorithms;
3) the feasibility of the proposed method is demonstrated
through experimental implementation of the Safety Barrier
Certificates on a team of five palm-sized quadrotors.



The rest of the paper is organized as follows: differential
flatness and exponential control barrier functions are revisited
in Sections II and III. The Safety Barrier Certificates are
presented in Section IV. In Section V, feasibility of the cer-
tificates and actuator limits are addressed. The experimental
work and conclusions are in Sections VI and VII.

II. DIFFERENTIAL FLATNESS OF QUADROTOR DYNAMICS

The quadrotor is a well-modelled dynamical system with
forces and torques generated by four propellers and gravity.
Z−Y−X Euler angles conventions are used to define the roll
(φ ), pitch (θ ), and yaw (ψ) angles between the quadrotor
body frame and the world coordinate frame. The relevant
coordinate frames and Euler angles are illustrated in Fig. 2.

Fig. 2: Quadrotor coordinate frames. The subscripts w de-
notes the world frame Fw, b for the quadrotor body frame Fb,
and c for an intermediate frame Fc after yaw angle rotation.
ω1 to ω4 are the angular velocities of the four propellers.
The palm-sized quadrotor illustrated is a Crazyflie 2.0 [1]
used in the experiment section.

Assuming that the damping and drag-like effects are
negligible [6], the dynamics of a quadrotor is governed by
the Newton-Euler equation,

mr̈ = mgzw + fzzb,

Jω̇b = τ−ωb× Jωb,

where r = [x,y,z]T is the position of the center of mass in
the world frame Fw, ωb = [p,q,r]T is the angular velocity
in the body frame Fb, and m and J are the mass and inertia
matrix of the quadrotor respectively. fz is the total thrust and
τ = [τx,τy,τz] is the torque generated by the motors. zw and
zb are the unit vectors in the Z-direction in the world and
body frames, respectively.

The quadrotor dynamics has been shown to be differen-
tially flat in [11], [23], i.e., the states and inputs of the
system can be written in terms of algebraic functions of
appropriately chosen flat outputs and their derivatives.

As shown in [23], the flat output for quadrotor
can be chosen as σ = [x,y,z,ψ]T . The full state ξ =
[x,y,z,vx,vy,vz,ψ,θ ,φ , p,q,r]T and input µ = [ fz,τx,τy,τz]

T

of the system can be represented algebraically using the

following functions

ξ = β (σ , σ̇ , σ̈ ,
...
σ ),

µ = γ(σ , σ̇ , σ̈ ,
...
σ ,

....
σ ),

where we refer to [23] for a detailed derivation and formula
of the so-called endogenous transformation (β ,γ).

Switching from [23] to this paper, in order to generate four
times differentiable flight trajectory, a virtual control input
v∈R3 is created for the integrator dynamics1. For simplicity
of planning, the yaw angle is always set to zero (ψ(t) = 0),

....r = v, (1)

where r = σ1:3 = [x,y,z]T ∈R3. The integrator system can be
equivalently written as state space form

q̇ =

F∈R4×4︷ ︸︸ ︷
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⊗I3×3 ·q

︸ ︷︷ ︸
f (q)

+

G∈R4︷︸︸︷
0
0
0
1

⊗I3×3

︸ ︷︷ ︸
g(q)

·v, (2)

where q = [rT , ṙT , r̈T ,
...r T ]T ∈ R12, ⊗ is Kronecker product.

Note that since collision avoidance requires simultaneous
response of three degrees of freedom, the trajectory planning
problem here can not be simplified by decoupling three
independent degrees of freedom, as was done in [11], [6].

III. EXPONENTIAL CONTROL BARRIER FUNCTIONS

With the simplified forth-order integrator model for
quadrotors introduced in Section II, Control Barrier Func-
tions (CBF) can be used to ensure collision-free flight
maneuvers. CBFs are Lyapunov-like functions, which can
be used to provably guarantee the forward invariance of a
desired set. When collision-free maneuvers are encoded as a
safe set, CBFs can then be used to ensure that quadrotors
never escape from the safe set, i.e., they never collide.
A class of non-conservative CBFs [2], [21], which allow
the state to grow inside the safe set as opposed to strictly
non-increasing, is adopted to synthesize the Safety Barrier
Certificates. Consequently, quadrotor flight controllers are
provided with more freedom to excise desire maneuvers
while remaining safe.

Let the safe set of quadrotor states be defined as

C0 = {q ∈ R12 | h(q)≥ 0}, (3)

where h : R12→ R is a smooth function.
Position based safety constraints, i.e., constraints defined

over r, are of particular interest for the quadrotor system (2),
so that the quadrotor does not collide with static or moving
obstacles. With a slight abuse of notation, we denote y0(r) =
h(q) as the output of the system, where h(q) only contains

1Note that the trajectory generated with the integrator dynamics (1) is not
necessarily four times differentiable. In addition, the virtual control input
v ∈R3 needs to be Lipschitz continuous for the forth derivative to exist [8],
which will be shown in Section IV.



the position variable r. Because the virtual control input v
is the forth derivative of the position variable r, the relative
degree of y0(r) is 4, which means that

y(4)0 (r) = L4
f h(q)+LgL3

f h(q)v, (4)

where the Lie derivative formulation stands for

ḣ(q) =
∂h(q)

∂q
( f (q)+g(q)v) = L f h(q)+Lgh(q)v.

Note that due to the high relative degree of y(r), CBFs
in [2], [21] can not be directly applied here. A variation
called Exponential Control Barrier Function (ECBF) [14] can
however be leveraged to ensure the forward invariance of C0.

Definition III.1: Given the dynamical system (2) and a
set C0 defined in (3), the smooth function h : C0 → R
with relative degree of 4 is an Exponential Control Barrier
Function (ECBF) if there exists a vector K ∈R1×4 such that
∀x ∈ C0,

sup
u∈U

[L4
f h(q)+LgL3

f h(q)v+Kη ]≥ 0, (5)

and h(q(t))≥CeF−GKη(q0)≥ 0 when h(q0)≥ 0, where η =
[h(q),L f h(q),L2

f h(q),L3
f h(q)]T , C = [1,0,0,0].

The eligible vector K can be obtained by placing the poles
of the closed-loop matrix (F−GK) at p =−[p1, p2, ..., p4]

T ,
where pi > 0 for i = 1,2,3,4. With these pole locations, a
family of outputs yi, i = 1,2,3,4 can be defined as

yi = (
d
dt

+ p1)◦ (
d
dt

+ p2)◦ ...◦ (
d
dt

+ pi)◦h(q),

with y0 = h(q), and the associated family of super level sets

Ci = {q ∈ R12 | yi(q)≥ 0}. (6)

Theorem 3.1: Given a safe set C0 in (3) and associated
ECBF h(q) : C0→ R, with initially q0 ∈ Ci, i = 0,1,2,3 for
system (2), any Lipschitz continuous controller v(q) ∈ Kv(q)
renders C0 forward invariant, where

Kv(q) = {v ∈V | L4
f h(q)+LgL3

f h(q)v+Kvη ≥ 0},

and η = [h(q),L f h(q),L2
f h(q),L3

f h(q)]T .
We refer to [14] for the detailed proof of general cases

of this theorem. The basic idea is to design a stabilizing
controller for the system using pole placement, then use
Comparison Lemma [8] to show recursively that Ci, i =
0,1,2,3, is forward invariant.

IV. SAFETY BARRIER CERTIFICATES FOR TEAMS OF
QUADROTORS

Two of the main tools, i.e., differential flatness property of
quadrotor and ECBF for a single quadrotor, for constructing
Safety Barrier Certificates have been revisited in sections II
and III. This section focuses on assembling Safety Barrier
Certificates for teams of quadrotors utilizing these tools.

A. Safety Region Modelled With Super-ellipsoids

Consider a team of quadrotors indexed by M =
{1,2,3, . . . ,m}, the dynamics of quadrotors are modelled as
forth-order integrators with virtual inputs vi ∈ R3,

....r i = vi, i ∈M (7)

where ri = [xi,yi,zi]
T is the position of the center of mass of

quadrotor i. The full state of quadrotor i is represented by
qi = [rT

i , ṙ
T
i , r̈

T
i ,

...r T
i ]

T ∈ R12. Let r = [rT
1 ,r

T
2 , ...,r

T
m]

T ∈ R3m

and v = [vT
1 ,v

T
2 , ...,v

T
m]

T ∈R3m denote the aggregate position
and virtual control of the team of quadrotors.

In order to ensure the safety of the team of quadrotors, all
pairwise collisions between quadrotors need to be avoided.
In addition, quadrotors can not fly directly over each other
due to the air flow disturbance generated by propellers
as illustrated in Fig. 1. During actual flights, the bottom
quadrotor generally goes unstable or even crash due to the
strong wind blowing from above.

To accommodate these safety requirements, each quadro-
tor is encapsulated with a ‘rectangle shape’ super-ellipsoid2.
Considering any pair of quadrotors (i, j), the pairwise safe
set is defined as

Ci j = {(qi,q j) | hi j(qi,q j)≥ 0}, (8)

hi j(qi,q j) = (xi− x j)
4 +(yi− y j)

4 +(
zi− z j

c
)4−D4

s ,

where Ds is the safety distance, c is the scaling factor along
the Z axis caused by air flow disturbance. In practice, c
is obtained by flying two quadrotors over each other and
identify the critical separation distance at which the bottom
quadrotor goes unstable. Two quadrotors are considered safe
when two ‘rectangle shape’ super-ellipsoids do not intersect
with each other as shown in Fig. 3.
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elled with super-ellipsoids

Fig. 3: Safe regions of quadrotors modelled with super-
ellipsoids.

Note that a ‘rectangle shape’ super-ellipsoid is chosen to
appropriately approximate the safe region, since the yaw
angle of quadrotors is trivially set to ψ = 0 and quadrotors
are flying with ‘X’ configuration3. Alternatively, a ‘cylinder

2A super-ellipsoid is a solid geometry generally defined with the implicit
function [( x

a )
r +( y

b )
r]

n
r +( z

c )
n ≤ 1 with r,n ∈ R+[3]. r = n = 4 is selected

to approximate a ‘rectangle shape’ here.
3‘X’ configuration is when the quadrotor is configured with two propellers

facing forward as shown in Fig. 2. ‘X’ configuration is often favored due
to improved flight agility and onboard camera view clearance.



shape’ super-ellipsoid can be picked for arbitrary yaw angles,

h̄i j(qi,q j) = [(xi− x j)
2 +(yi− y j)

2]
n
2 +(

zi− z j

c
)n−Dn

s .

Since the pairwise safe set Ci j is defined in terms of
position variables ri,r j, the ECBF candidate hi j(qi,q j) has a
relative degree of 4. (qi,q j) is omitted hereafter for notation
convenience. To ensure the forward invariance of Ci j, virtual
controls of quadrotor i and j need to satisfy

....
h i j +K · [hi j, ḣi j, ḧi j,

...
h i j]

T ≥ 0, (9)

where
....
h i j is affine in vi,v j. Thus, the safety barrier con-

straint (9) can be rearranged into a linear constraint on the
virtual control when qi,q j are given,

Ai j(qi,q j) · v≤ bi j(qi,q j), (10)

where Ai j(qi,q j) = −[0, ..., 1︸︷︷︸
ith

, ..., −1︸︷︷︸
jth

, ...,0] ⊗ [4(xi −

x j)
3,4(yi− y j)

3,4 (zi−z j)
3

c4 ] ∈ R1×3m,
bi j(qi,q j) = K · [hi j, ḣi j, ḧi j,

...
h i j]

T +(24δ̇ 4 + 144δ ◦ δ̇ 2 ◦ δ̈ +

36r̄2 ◦ δ̈ 2 +48r̄2 ◦ δ̇ ◦
...
δ ) ·13, δ = [xi− x j,yi− y j,

zi−z j
c ],

and ◦ stands for elementwise vector product.
The Safety Barrier Certificates are formed by assembling

all the pairwise safety barrier constraints

Ksafe = (11)

{v ∈ R3m | Ai j(qi,q j) · v≤ bi j(qi,q j),∀i < j, i, j ∈M }.

As long as the virtual control v satisfies the Safety Barrier
Certificates Ksa f e and corresponding initial conditions, the
team of quadrotors is guaranteed to be safe by Theorem 3.1.

B. Modifying the Nomimal Trajectory with Safety Barrier
Certificates

It is often difficult to generate provably collision-free
trajectories when planning the nominal trajectory for teams
of quadrotors. Instead, we can first plan the flight trajectory
without considering collisions, and then modify it using
Safety Barrier Certificates in a minimally invasive way to
avoid collisions. Here we consider the case when a nominal
trajectory r̂(t) = [r̂T

1 (t), r̂
T
2 (t), ..., r̂

T
m(t)] ∈C4 is provided. For

generality, the preplanned nominal trajectory can be gen-
erated by any methods, e.g., optimal control approach [6],
vector field approach[23], or parametrized curves [11], as
long as it is sufficiently smooth, i.e., four times differentiable.
This smooth reference trajectory r̂i(t) is then tracked by a
simulated integrator model using a pole placement controller
with a simulated time step of 0.02s (simulates the 50Hz flight
controller),

v̂i =
....r i−K · [r̂i ˙̂ri ¨̂ri

...
r̂ i]

T , (12)

where K is picked to be the same as used for ECBFs in (9)
to trade-off tracking performance and safety enforcement.

To respect the nominal control v̂i as much as possible,
a quadratic program is used to minimize the difference

between the actual and nominal control,

v∗ = argmin
v

J(v) =
N

∑
i=1
‖vi− v̂i‖2

s.t. Ai j(qi,q j)v≤ bi j(qi,q j), ∀i < j,

‖vi‖∞ ≤ αi, ∀i ∈M ,
(13)

where αi is a bound on the virtual snap control. It can be
observed that the actual controller vi will be the same as v̂i,
if it is safe. The controller will only be rectified if it violates
the Safety Barrier Certificates, i.e., if it leads to collisions.

The dynamics of the simulated forth-order integrator
system is integrated forward using forward Euler method.
Similar to [13], the controller vi generated by the QP (13)
will be Lipschitz continuous. Thus, the rectified collision-
free trajectory r(t) will still be four times differentiable.
Differential flatness property of quadrotors can still be used
to execute the rectified collision-free trajectory r(t).

Although collision avoidance is still done in a centralized
manner here, the required numbers of decision variables
and constraints are significantly reduced compared with the
mixed-integer programming technique [12]. Decentralization
of safety certificates is also possible with methods similar to
[17], but precise measurements of other quadrotors’ motion
might be demanded.

V. FEASIBILITY AND PARAMETERIZATION

Section IV provides a systematic approach to modify pre-
planned trajectory in a minimally-invasive and smooth way
using Safety Barrier Certificates. However, it is not clear
whether the quadratic program in (13) is always feasible
or not. In addition, the generated trajectory might require
excessive amount of control effort to execute. This section
provides theoretical guarantees and parameterization method
to address those issues.
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Fig. 4: Comparisons of control efforts for the quadrotor
using (ks = 100) or without using (ks = 0) virtual vehicle
parameterization.
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A. Proof of Existence of Solution

The following theorem guarantees that a feasible safe
solution to the QP problem (13) always exists.

Theorem 5.1: Given a team of quadrotors indexed by
M with dynamics given in (7), the aggregate admissible
safe control space Ksafe in (11) allowed by Safety Barrier
Certificates is guaranteed to be non-empty.

Proof: See [18].

The idea of control sharing barrier function used in the proof
is similar to control-sharing and merging control Lyapunov
functions introduced in [5].

B. Virtual Vehicle Parameterization

Collision avoidance maneuvers of quadrotors might some-
times lead to significant deviations from reference trajecto-
ries. In this case, excessive control effort might be required
for the quadrotors to return to the reference point along the
nominal trajectory. To address this issue, a virtual vehicle
parameterization method proposed in [4] is adopted.

The basic idea of virtual vehicle paramterization is to slow
down or speed up the virtual vehicle (reference point r̂(t)
on the nominal trajectory) as the tracking error er = ‖r−
r̂‖ increases or decreases. In this particular application, we
use the following virtual time variable to parameterize the
reference point on the nominal trajectory

ṡ = e−ks‖er‖2 , (14)

where ks is the virtual parameterization gain. Instead of r̂(t),
r̂(s(t)) is fed into the Safety Barrier Certificates rectifier
shown in Fig. 5. Intuitively, the virtual vehicle will slow
down (ṡ < 1) when the tracking error is large; it will travel
exactly at the desire speed (ṡ = 1) when the tracking error is
zero. This parameterization mechanism is intended to reduce
the amount of control effort when the quadrotor has to
deviate away from the virtual vehicle to avoid collisions.

To demonstrate the effectiveness of virtual vehicle param-
eterization, a simulation of two quadrotors flying pass each
other is presented. In this example, the collision avoidance
manuever requires a maximum pitch angle of 70◦ and
a maximum thrust of 2.8 times hovering thrust without

parameterization (ks = 0) as shown in Fig. 4. In contrast,
a maximum pitch angle of 25◦ and a maximum thrust of
1.2 times hovering thrust are needed with parameterization
(ks = 100). In both cases, the desired task is accomplished
within 6s.

Combined with the feasibility result in section V-A, the
parameterization mechanism will always generate a feasible
trajectory that satisfies given actuator constraints.

C. Overview of Safe Trajectory Generation Strategy

An overview of the safe trajectory generation strategy is
summarized in Fig. 5. A smooth reference trajectory r̂(t) ∈
C4 is first fed into the safety barrier certificates rectifier,
where the QP controller (13) is used to enforce collision-free
flight maneuvers. The rectified smooth safe trajectory r(t) ∈
C4 is then transformed into quadrotor states and controls
using the differential flatness property. The full states and
controls are checked to ensure that actuator limits are not
violated. Otherwise, the reference trajectory r̂(s(t)) ∈ C4

is parameterized and fed into the safety barrier certificates
rectifier again. This process can be repeated until the virtual
vehicle parameterization strategy yields appropriate flight
trajectory that respects both safety and actuator constraints.
In the end, the generated feasible safe trajectory is sent to
execute on the team of quadrotors.

VI. EXPERIMENT

The Safety Barrier Certificates are implemented on a
team of five palm-sized quadrotors (Crazyflie 2.0). All com-
munication channels between different devices and control
programs are coordinated by a ROS server. The real-time
positions and Euler angles of quadrotors are tracked by the
Optitrack motion capture system with an update rate of 50Hz.
The 50Hz quadrotor motion controller is developed based on
the ROS driver for Crazyflie 2.0 built by ACTLab at USC [7].
To ensure stable trajectory tracking behavior, Euler angles
and Euler angle rates generated with the differential flatness
property are sent to quadrotors as control commands. The
overall quadrotor control diagram is shown in Fig. 6.

During the experiment, quadrotor Q5 is commanded to fly
through a spinning formation as illustrated in Fig. 7.



ROS Server

Optitrack

System

Controller

+

Barrier Certi cates

Posit
ions

Euler A
ngles

Controls

Quad States
Controls 
States

Controls 

States

Contro
ls 

Sta
te

s

C
ontrols 

States

C
o
n
tr

o
ls

 
S
ta

te
s

Fig. 6: Quadrotor control system diagram

Fig. 7: Long exposure photo of the experiment of quad Q5
flying through a spinning formation of four quads Q1−Q4.
The traces of light illustrate trajectories of quadrotors. A
video of this experiment is available online [15].

The reference trajectories of quadrotors Q1−Q4 are

r̂1(t) =

0.45sin(π

2 t− π

2 )
0.45cos(π

2 t− π

2 )
−0.8

 , r̂2(t) =

0.45cos(π

2 t)
0.45sin(π

2 t)
−0.8

 ,

r̂3(t) =

0.45cos(π

2 t + π

2 )
0.45sin(π

2 t + π

2 )
−0.8

 , r̂4(t) =

0.45cos(π

2 t +π)
0.45sin(π

2 t +π)
−0.8

 .

Another quadrotor Q5 is designed to go from p0 =
[−0.9,0.9,0.8]T to p1 = [0.9,0.9,0.8]T . The nominal trajec-
tory can be generated as,

r̂5(t) = BezierInterp(p0, p1),

where the BezierInterp function stands for the Bezier curve
interpolation algorithm between two waypoints.

The safety distance between quadrotors is specified as
Ds = 25cm to account for the tracking frames and controller
tracking errors. During the experiment, the Safety Barrier
Certificates are applied to modify the nominal trajectories
in a minimally invasive way to avoid collisions. As shown
in Fig. 7, Q5 successfully navigated through the spinning
formation with minimal impact on the other four quadrotors.

VII. CONCLUSIONS

A flight trajectory modification strategy is presented in this
paper to ensure collision-free manuevers for teams of differ-
ential flatness based quadrotors. To do this, nominal flight
trajectories, which are generated with existing control and
planning algorithms, are modified in a minimally invasive

way using the Safety Barrier Certificates to avoid collisions.
The proof of existence of feasible controller and virtual
vehicle parameterization method to accommodate actuator
limits are presented. In the end, experimental implementation
of the Safety Barrier Certificates on a team of five quadrotors
validates the effectiveness of the proposed strategy.
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