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Abstract— This paper investigates optimal control problems
formulated over a class of piecewise-smooth controlled vector
fields. Rather than optimizing over the discontinuous system
directly, we instead formulate optimal control problems over
a family of regularizations which are obtained by "smoothing
out" the discontinuity in the original system using tools from
singular perturbation theory. Standard, efficient derivative-
based algorithms are immediately applicable to solve these
smooth approximations to local optimally. Under standard
regularity conditions, it is demonstrated that the smooth ap-
proximations provide accurate derivative information about the
non-smooth problem in the limiting case. The utility of the
technique is demonstrated in an in-depth example, where we
utilize recently developed reduced-order modeling techniques
from the dynamic walking community to generate motion plans
across contact sequences for a 18-DOF model of a lower-body
exoskeleton.

I. INTRODUCTION

Non-smooth dynamical systems naturally arise when mod-
elling a vast array of engineering systems, and are familiar
to researchers in areas ranging from the dynamic walking
community [1], [2] to the domain of power systems analysis
[3]. However, despite the pervasive nature of discontinuous
dynamics in systems theory and control, optimizing system
trajectories through unplanned sequences of discontinuities
remains a distinct technical challenge.

In particular, non-smooth systems are well known to
display non-differentiability with respect to initial conditions
and inputs [4, Chapter 2, Section 11]. This fundamental
departure from smooth control theory has meant that the
powerful optimization-based techniques designed for smooth
control systems [5] cannot be readily applied to the non-
smooth setting. As an example, in the context of optimal
control, this has traditionally led to the implementation of
restrictive practices, such as forming large mixed-integer
programs to reason over all possible "mode" sequences
the trajectories may undergo [6], or limiting the class of
system behaviors by fixing the number and sequence of
discontinuities the trajectory of the system encounters a
priori [7], [8].

In this work, we formulate an optimal control problem
over a class of piecewise-smooth vector fields. Rather than
reasoning through the discontinuities of the system directly,
we instead study a family of regularizations which are ob-
tained by "smoothing" the original non-smooth system along
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the discontinuity. We then formulate approximate optimal
control problems over these smooth control systems which
can be solved using standard derivative-based techniques,
without pre-specifying the number of times the discontinuity
needs to be crossed. Theoretical guarantees are discussed,
demonstrating when the regularized problem can be used to
obtain accurate derivative information about the non-smooth
problem. This result enables the use of mature iterative
schemes to approach minimizers of the discontinuous prob-
lem using a sequence of the regularizations [5]. Finally, we
use the smoothing approach to generate trajectories for a
model of a bipedal robot, specifically a powered exoskeleton,
which intermittently makes contact with the ground. In
particular, we build on [9], [10], which introduced a class
of embedded reduced-order modeling techniques to simplify
the complexity of the motion planning problem.

A. Relation to the Literature

The roots of the smoothing technique considered in this
paper can be traced back to the literature on geometric
singular perturbation theory (see e.g. [11] or [12]). The
precise smoothing approach considered in this paper was
first considered for autonomous piecewiese-smooth systems
in work pioneered by Teixeira and others [13], [14], [15].
Emerging applications of these techniques in the context of
control can be found in [16], [17], [18] and the works that
follow them. A growing number of authors have studied vari-
ational problems over this class of regularization’s [19], [17],
[16]. Our contribution is distinct from the above literature in
that we formally prove convergence between variations on
the discontinuous and regularized problems in the case when
piecewise-continuous controls are applied to the system. This
is a key step for analyzing optimization problems formulated
over the regularization’s, as solutions returned by numerical
optimal control schemes generally return discontinuous input
signals [5].

Finally we mention a recent contribution [20], which
builds on the geometric theory of hybrid systems
[21],[22],[23], in which the smoothing techniques discussed
in this paper were extended to a class of hybrid dynamical
systems where the trajectories of the system undergo au-
tonomous "jumps". We hope to extend the results presented
here to this more general setting in a forthcoming article.

B. Notation

We now fix notation used throughout the document. Unless
otherwise noted, the 2-norm is our choice of norm for finite
dimensional spaces. We say that a function f : Rn → Rp is
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Lipschitz continuous if there exists L > 0 such that for each
x1, x2 ∈ Rn we have ||f(x1)−f(x2)|| ≤ L||x1−x2||. Given
a normed space V , P(V ) denotes the set of all subsets of
V . Given a subset S ⊂ V , coS denotes the convex closure
of S in V.

Throughout the paper all of the control systems we con-
sider will have states belonging to Rn and admissible inputs
taking values in Rm, where n and m are positive integers.
Moreover, we will assume that the admissible set of initial
conditions for these control systems belong to a set D ⊂ Rn,
and that the control supplied to these systems takes on values
in the set U ⊂ Rm. Both D and U are assumed to be
compact, connected and convex. Fixing a finite time horizon
T > 0, we let PC([0, T ], U) denote the set of piece-wise
continuous functions from [0, T ] into U . Recall that piece-
wise continuous functions have a finite number of points
of discontinuity on a bounded domain. When considering
optimization problems for the discontinuous system and our
smooth regularizations, we will optimize over the set

X = D × PC([0, T ], U).

We define the space of tangent vectors on X by

X ′ = Rn × PC([0, T ], Rm).

Finally, we endow both X and X ′ with the norm
|| · || : Rn × PC([0, T ], Rm)→ R defined for each ξ =
(x0, u) ∈ Rn × PC([0, T ], Rm) by

‖ξ‖ = ||x0||2 + ||u||2.

We emphasize that PC([0, T ],Rm) ⊂ L2([0, T ],Rm) to
motivate our choice of norm. Note that our chosen norm
induces an obvious inner product.

II. PIECEWISE SMOOTH CONTROL SYSTEMS

We now introduce the class of bimodal piecewise-smooth
control systems considered in this paper, briefly review
Filippov’s convention for defining the dynamics of this class
of systems, and introduce the smooth approximations we
study throughout the paper.

A. Bimodal Piecewise-smooth Control Systems

To begin, let g : Rn → R be a regular, smooth map
with Lipschitz continuous first and second partial derivatives.
Consider the two disjoint domains

D1 = {x ∈ Rn : g(x) < 0}

and
D2 = {x ∈ Rn : g(x) > 0},

which are separated by the co-dimension-1 sub-manifold

Σ = {x ∈ Rn : g(x) = 0}.

Let f1, f2 : Rn × Rm → Rn be smooth vector fields with
Lipschitz continuous first and second partial derivatives, and
then consider the piecewise-smooth control system:

ẋ = f(x, u) =

{
f1(x, u) if x ∈ D1

f2(x, u) if x ∈ D2

(1)

A

B

C
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Fig. 1: (left) Trajectories of the discontinuous system with
the input fixed. The trajectories starting from points B and C
satisfy Assumption 1 and are thus unique. There are multiple
solutions starting from point A, which passes through a point
not satisfying the Assumption. (right) A depiction of the
region of regularization.

Note that f is undefined along Σ, and in general may also be
discontinuous along this surface. Due to the discontinuity in
f , classical (or Carathéodory) solutions for the differential
equation (1) may fail to exists along the surface of discon-
tinuity. Thus, we turn to Filippov’s convention to define the
dynamics of the system in the following section.

For economy of notation we define the Lie Derivatives
Lf1g, Lf2g : Rn × Rm → R by

Lf1g(x, u) : = ∇g(x) · f1(x, u)

Lf2g(x, u) : = ∇g(x) · f2(x, u).

B. Filippov Solutions

We now review Filippov’s convention, referring the in-
terested reader to standard texts [4], [11], [24] for a more
thorough introduction. Throughout the document we will
make the following regularity assumption, which ensures
the (right) existence and uniqueness of Filippov solutions
for the discontinuous system (1) [4, Chapeter 2, Section 10,
Theorem 2].

Assumption 1. There exists δ > 0 such that for each point
(x, u) ∈ Σ × U at least one of the following inequalities
holds (with the understanding that the same inequality need
not hold at every point):

Lf1g(x, u) > δ or Lf2g(x, u) < δ (2)

Roughly speaking, the assumption ensures that at least one
of the vector fields f1, f2 points into the switching surface
for each choice of (x, u) ∈ Σ×U . The assumption rules out
pathological cases where Lf1(x, u) < 0 and Lf2(x, u) > 0
when x ∈ Σ, in which case a solution passing through this
point may continue into either D1 or D2.

More concretely, Filippov’s convention defines the dy-
namics of the discontinuous system using the following
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differential inclusion:

ẋ ∈ F (x, u) =





{f1(x, u)} if x ∈ D1

co{f1(x, u), f2(x, u)} if x ∈ Σ

{f2(x, u)} if x ∈ D2,

(3)

where F : Rm × Rn → P(Rn) is a multivalued map. Note
that when x 6∈ Σ F (x, u) is a singleton taking on a value
equal to that of f(x, u). However, when x ∈ Σ, F (x, u) may
be multi-valued. For each data ξ = (x0, u) ∈ X , we say
that the absolutely continuous xξ : [0, T ]→ Rn is a Filippov
solution corresponding to this data if xξ(0) = x0 and it
satisfies the differential inclusion (3) almost everywhere.
With Assumption 1 in place, for each t ∈ [0, T ] we then
define the map φt : X → Rn by

φt(ξ) = xξ(t). (4)

A number of Filippov solutions for our chosen class of
piecewise smooth control systems are depicted in Figure 1,
in the case where a constant input u ∈ U is applied to the
system. In the Figure, solutions starting from the point A
pass through a point that violates Assumption 1 leading to
non-uniqueness. Our analysis is restricted to cases such as
those encountered by solutions starting from the points B and
C, wherein the trajectories either simply cross the surface of
discontinuity or slide along the surface. We briefly outline
conditions under which these two behaviors arise.

For a fixed ξ ∈ X , suppose that φt′(ξ) ∈ Σ for some t′ ∈
[0, T ]. If Lf1g(φt(ξ), u(t)) > 0 and Lf2g(φt(ξ), u(t)) > 0
(or Lf1g(φt(ξ), u(t)) < 0 and Lf2g(φt(ξ), u(t)) < 0) for
each t in some open interval containing t′, then the solution
simply crosses the surface of discontinuity. Note that in this
case classical (Carathéodory) solutions to the non-smooth
differential equation (1) are well-defined.

On the other hand, in the case that Lf1g(φt(ξ), u(t)) > 0
and Lf2g(φt(ξ), u(t)) < 0 for each t in some open interval
of time containing t′, there will be a unique Fillippov solution
which slides along the surface of discontinuity. This motion
can be described by the differential equation

ẋ = fs(x, u), (5)

where Filippov’s sliding vector field is defined by

fs(x, u) = (1− α(x, u))f1(x, u) + α(x, u)f2(x, u)

where

α(x, u) =
∇g(x) · f1(x, u)

∇g(x) · (f1(x, u)− f2(x, u))

selects the unique convex combination of f1 and f2 which
keeps the trajectory on Σ.

We next introduce a family of smooth regularizations
for the discontinuous vector field (1) which are used to
approximate these dynamics.

C. Smooth Approximations via Singlular Perturbations

The family of smooth approximations condisdered in this
paper are parameterized by ε > 0 and are obtained by
smoothing (1) along the region of regulatization

Σε = {x ∈ Rn : − ε < g(x) < ε}.

As depicted on the right of Figure 1, Σε is a 2ε-thick strip
centered around Σ. The main idea behind the smoothing ap-
proach is to use the following class of functions to transition
between f1 and f2 along Σε.

Definition 1. We say that ϕ ∈ C∞(R, [0, 1]) is a transition
function if 1) ϕ(a) = 0 if a ≤ −1, 2) ϕ(a) = 1 if a ≥ 1,
3) ϕ is monotonically increasing on (−1, 1), and 4) each
of the first and second partial derivatives of ϕ are Lipschitz
continuous.

For the rest of the paper, we assume that a single transition
function ϕ has been selected. For each ε > 0 we then define
the ε-relaxation of (1) to be

ẋ = fε(x, u) (6)

where fε : Rn × Rm → Rn is given by

fε(x, u) =

(
1− ϕ

(
g(x)

ε

))
f1(x, u) + ϕ

(
g(x)

ε

)
f2(x, u).

Note that fε(x, u) is a convex combination of f1(x, u) and
f2(x, u) if x ∈ Σε, and that fε(x, u) = f1(x, u) if x ∈
D1 \ Σε and fε(x, u) = f2(x, u) if x ∈ D2 \ Σε.

It is straightforward to see that for each ε > 0 the
vector field fε is smooth and Lipschitz continuous, and
thus the trajectories corresponding to the smooth system will
be unique. Thus for each ε > 0 and ξ = (x0, u) ∈ X
let x(ε,ξ) : [0, T ] → Rn be the solution to (6) with initial
condition x(ξ,ε)(0) = x0 and for each t ∈ [0, T ] define the
flow φεt : X → Rn by

φεt (ξ) = x(ε,ξ)(t).

The following result from [20] establishes that the trajecto-
ries of the relaxed system converge to the Filippov solutions
of the discontinuous system as ε→ 0.

Lemma 1. ([20]) Let Assumption 1 hold for (1). Then there
exists C > 0 and ε0 > 0 such that for each ε ≤ ε0, t ∈ [0, T ]
and ξ = (x0, u) ∈ X

‖φt(ξ)− φεt (ξ)‖ ≤ Cε.

In other words, the solutions to the regularized system
converge to the solutions of the non-smooth system at a rate
that is linear in ε under our standing regularity condition.

III. OPTIMAL CONTROL PROBLEMS

In this section we formulate an optimal control problem
over the piecewise-smooth system introduced in Section II
and a family of approximate problems over the smooth
regularizations introduced in Section II-C. We then discuss
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the challenges associated with applying standard gradient-
based algorithms to arrive at minimizers for these problems.
While Assumption 1 is enough to ensure uniqueness of
solutions for the discontinuous system, stronger assumptions
will need to be put into place to ensure differentiablility with
respect to initial conditions and inputs.

A. Optimal Control Problems

To begin, let ` : Rn → R be a cost function which is
assumed to have Lipschitz continuous first and second partial
derivatives, and define the cost functional L : X → R by

L(ξ) = `(φT (ξ)).

We then define the following optimal control problem:

(P) inf
ξ∈X

L(ξ)

Note that this problem formulation is quite general, since
there exists well-known transformations to include additional
terms, such as running costs, into the terminal cost functional
we consider here [5, Chapter 5].

Next, for each ε > 0 we define the regularized cost
functional Lε : X → R by

Lε(ξ) = `(φεT (ξ)) (7)

and subsequently define the ε−relaxation of P by:

(Pε) inf
ξ∈X

.Lε(ξ)

As a straightforward consequence of Lemma 1, we see that
for each ξ ∈ X

lim
ε→0

Lε(ξ) = L(ξ). (8)

While this condition is sufficient to ensure that global mini-
mizers of Pε converge to global minimizers of P as ε→ 0, it
is generally not sufficient to say the same of local minimizers
for the problems [5, Chapter 3]. Frameworks for analyzing
this more difficult condition rely on variational analysis of
the approximate and limiting problems. This motivates the
utility of the convergence results presented in this article.

B. Directional Derivatives

The majority of practical tools for finding local minimizers
of optimal control problems rely on calculating the deriva-
tives of the cost functional with respect to changes in the
initial condition an inputs applied to the system. Once these
derivatives are obtained, standard optimization procedures
can be applied to iteratively improve performance using
numerical discretization schemes [5].

1) Directional Derivatives of Regularized Problems:
Since the vector field fε is smooth for each ε > 0,
we can compute directional derivatives of Lε in the usual
way. In particular, given ξ = (x0, u) ∈ X , we define
DLε(ξ; ·) : X ′ → R by

DLε(ξ; δξ) = lim
λ↓0

Lε(ξ + λ · δξ)− Lε(ξ)
λ

(9)

for each direction δξ = (δx0, δu) ∈ X ′, which by [5,
Theorem 5.6.8] is given by

DLε(ξ; δξ) = p(0)T · δx0 +

∫ T

0

p(τ)TB(τ)δu(τ)dτ

where p : [0, T ] → Rn is the solution to the co-state or
adjoint equations

−ṗ(t) = A(t)T p(t) a.e. t ∈ [0, T ], p(T )T =
d

dx
l(φεT (ξ))

and for each t ∈ [0, T ] we have

A(t) =
∂

∂x
fε(φεt (ξ), u(t))

B(t) =
∂

∂u
fε(φεt (ξ), u(t))

In particular, the directional derivative DLε(ξ; δξ) provides
a first-order approximation to how Lε changes by perturbing
the data supplied to the system in the direction δξ.

However, inspecting fε, we see that the partial derivative
∂
∂xf

ε(x, u) will be of the order 1
ε when x ∈ Σε. Thus, we

should be concerned that the adjoint equations associated to
the regularized system will "blow up" as we take ε→ 0 along
trajectories which pass through the region of regularization.
In other words, in the numerical setting we should be con-
cerned that discretizations of P ε will become ill-conditioned
for small values of the regularization parameter. However,
our subsequent analysis will demonstrate that this is not the
case, and that the gradients of P ε remain bounded even as we
take ε → 0. Further discussion on numerical considerations
can be found in [19] and [25].

2) Directional Derivatives of Non-smooth Problem: It is
well-known that Filippov solutions for the discontinuous
system (1) may have a non-smooth dependence on the initial
conditions and inputs supplied to the system [4, Chapter
2, Section 11]. In particular, the map φt(·) may fail to be
differentiable at the point ξ ∈ X if the trajectory associated
to this data arrives at the surface of discontinuity at time
t. In the context of optimal control, this means that the
adjoint equations associated to the discontinuous system
may under go discrete "jumps" at time instances when the
nominal trajectory reaches the surface of discontinuity1. Due
to these discontinuities, the adjoint equations, and conse-
quently the gradients of L, are difficult to approximate
numerically using standard integration techniques such as
Euler integration [19]. As discussed in Section I-A, this has
typically meant that derivative-based methods for solving
optimal control problems over discontinuous systems have
required restrictive practices such as fixing the number of
times the trajectory crosses the surface of discontinuity a
priori. This is our primary motivation for employing the
smooth approximations considered in the paper.

1The "jump conditions" associated with the adjoint equations of the
discontinuous system have a rich geometric interpretation which we do
not have space to discuss in this article. However, the interested reader
is referred to [4, Chapter 2, Section 11]) for a comprehensive discussion
regarding these "jump conditions" in the context of sensitivity analysis.
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Before proving our convergence results in Section IV, we
first formalize conditions which will ensure the differentia-
bility of L at a nominal choice of ξ = (x0, u) ∈ X .

Assumption 2. The nominal data ξ = (x0, u) ∈ X is such
that x0 6∈ Σ.

When the nominal Filippov solution begins on the surface
of discontinuity, solutions may fail to be differentiable with
respect to the supplied initial condition at this point since
small perturbations to x0 can cause nearby trajectories to
start in either D1 or D2, with some of these solutions
crossing the surface of discontinuity while others do not.
This assumption can be relaxed if the nominal solution
undergoes a stable sliding motion on some open interval
[0, t1) ⊂ [0, T ], since all nearby trajectories will reach the
surface of discontinuity. This point is discussed in more
detail in [26].

Our next assumption excludes pathological cases where
the nominal solution arrives at the surface of discontinuity
an infinite number of times. To formalize this notion, for each
ξ ∈ X we let T ξ denote the set of time instances at which
the corresponding Filippov solution arrives at the surface of
discontinuity:

T ξ = {t′ ∈ (0, T ] : φt′(ξ) ∈ Σ and ∃δ > 0 s.t.
φt(ξ) 6∈ Σ, ∀t ∈ (t′ − δ, t′)}

Assumption 3. The nominal data ξ = (x0, u) ∈ X is such
that T ξ is a finite set.

We also assume that the nominal trajectory does not arrive
at the surface of discontinuity exactly at time T . As discussed
above, this may lead φT to be non-differentiable at ξ, which
in turn may cause L to be non-differentiable.

Assumption 4. The nominal data is such that T 6∈ T ξ.

Our final assumption ensures that the nominal trajectory
arrives at the surface of discontinuity transversely, without
"skimming" the surface, a situation which is well known to
cause non-differentiability [4, Chapter 2, Section 11].

Assumption 5. The data ξ = (x0, u) ∈ X is such that if
t̂ ∈ T ξ then ∃γ > 0 and interval I = (t̂− γ, t̂+ γ) ∩ [0, T ]
such that

1) φt̂−(ξ) ∈ D1 ⇒ Lf1g(φt(ξ), u(t)) > 0, ∀t ∈ I
2) φt̂−(ξ) ∈ D2 ⇒ Lf2g(φt(ξ), u(t)) < 0, ∀t ∈ I

When the data ξ ∈ X satisfies the above assumptions the
map φT will be differentiable at ξ, and thus the directional
derivatives of L will be well-defined at this point. In partic-
ular we define DL(ξ; ·) : X ′ → R by

DL(ξ; δξ) = lim
λ↓0

L(ξ + λ · δξ)− L(ξ)

λ
, (10)

for each direction δξ ∈ X ′. When the above limit exists (i.e.
when the above assumptions hold), DL(ξ; δξ) provides a first
order approximation to how L will change when perturbed
in the direction δξ.

IV. CONVERGENCE RESULTS

We are now ready to present the theoretical contribution
of this work. As noted in Section III-B.1, we first need to
establish that the derivatives of our regularized problems do
not "blow up" as we take ε → 0. The following interme-
diate result ensures that our regularized problems remain
well-conditioned even for small values of the regularization
parameter. Proof of the following Lemma and subsequent
Theorem can be found in [26], where a number of other
useful regularity properties of the regularized optimization
problem are derived.

Lemma 2. Let Assumption 1 hold for the discontinuous
system (1). Then there exists C > 0 and ε0 > 0 such that
for each δξ ∈ X ′ and ε ≤ ε0

‖DLε(ξ; δξ)‖ ≤ C‖δξ‖ (11)

The result is proven by demonstrating that the co-state
equations associated to the nominal data remain bounded
even when passing through the region of regularization.
In cases where the nominal trajectory simply crosses the
surface of discontinuity (without sliding) this is unsurprising
since, for ε sufficiently small, the regularized solution will
take on the order of ε units of time to cross the region
of regularization, effectively "cancelling out" the effect of∥∥ ∂
∂xf

ε(x, u)
∥∥ being on the order of 1

ε in this region. The
case in which the nominal trajectory of the discontinuous
system slides along the surface of discontinuity must be
approached with more care. Nonetheless, our analysis uses a
decomposition similar to the technique presented in [16] to
demonstrate that the co-state equations are stable in regions
where sliding occurs for the discontinuous system.

Having established that the derivatives of our regularized
problems remain well defined even as ε → 0, we now
proceed to our main result:

Theorem 1. Let Assumption 1 hold. Let ξ = (x0, u) ∈ X
satisfy Assumptions 2-5. Then for each δξ = (δx0, δu) ∈ X ′

lim
ε→0

DLε(ξ; δξ) = DL(ξ; δξ)

In practice, solutions to difficult optimization problems are
often approximated by solving a sequence of approximate
problems. Theorem 1 is useful because it demonstrates that,
when Assumptions 1- 5 hold, a descent direction calculated
for Pε is also a descent direction for P, when ε is sufficiently
small. This enables the use of mature iterative schemes [5,
Chapter 3] to arrive at a local minima for P using a sequence
of regularized problems {Pεi}∞i=1 which are such that εi → 0
as i→∞.

Of course, when using the standard derivative based tech-
niques discussed in Section III-B.1 to solve a regularized
problem (or a sequence of regularized problems) to local
optimality we should not expect Assumptions 2 and 4 to
hold at every iterate. Indeed, our stated goal was to develop
a technique which allows us to freely optimize trajectories
across the surface of discontinuity. Nevertheless, so long as
an iterative procedure which solves a sequence of problems
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{P εi}i∈N eventually produces iterates which all lie in a
region of X which satisfies the Assumptions of Theorem
1, the above approach can be used to analyze convergence
of the algorithm to stationary points of P. A more thorough
and formal discussion of this point can be found in [26].

V. TRAJECTORY OPTIMIZATION ON A REDUCED-ORDER
MODEL

To demonstrate the utility of the smoothing technique
we have investigated, we first use the approach to generate
hopping trajectories for an actuated Spring-mass hopper,
which was first proposed in [9]. Its nonlinear leg spring
model has shown great value for robotic applications such
as under-actuated bipedal walking [1] and fully-actuated
humanoid walking [10]. We note, however, that the trajectory
generation procedures proposed in these prior works required
fixing the sequence of contacts the robot makes with the
ground a priori. Here, we demonstrate that the regularization
techniques we consider can be used to effectively generate
optimal trajectories on the Spring-mass model without pre-
specifying the contact sequence ahead of time.

A. Actuated Spring-mass Model of Hopping

The actuated Spring-mass hopper is depicted in Fig. 2 (a).
The model has four states: the height of the mass, z, and
its time derivative ż, as well as the natural length of the leg
spring, L, and its time derivative, L̇. The model is actuated
by controlling L, i.e.,

L̈ = u, (12)

where u the actuation on the leg. The Flight phase is ballistic,
thus the dynamics of the mass is,

z̈ = −g (13)

where g is the gravitational constant. When the hopper is on
the ground, the dynamics of the mass is,

z̈ =
F (z, ż, L, L̇)

m
− g (14)

where m is the value of the mass and F (z, ż, L, L̇) =
K(L)(L − z) + D(L)(L̇ − z) is the leg force from the
spring deflection. Here, K(L) and D(L) are the stiffness
and damping coefficient, respectively. Further details of the
model can be found in [9]. In practice K(L) is much larger
than D(L), thus we make the simplifying assumption that the
robot lifts off when L = z. The validity of this assumption
follows from the close tracking between the reduced and
full-order models exhibited in Section VI.

Collecting the states of the robot as x = (z, ż, L, L̇), we
represent the dynamics using the piecewise-smooth vector
field f : R4 × R→ R4 where,

ẋ = f(x, u) =

{
fF(x, u) if g(x) > 0

fG(x, u) if g(x) < 0,
(15)

Fig. 2: (a) The actuated Spring-mass model. (b) The opti-
mized hopping trajectories. (c) Visualization of the hopping.

where,

fF(x, u) = (ż,−g, L̇, u)T (16)

fG(x, u) = (ż, F (x, ż, L, L̇)/m− g, L̇, u)T (17)
g(x) = z − L. (18)

B. Trajectory Optimization Via Smoothing
Now we apply the proposed method by optimizing a

hopping motion without specifying the contact modes. The
task is to reach an apex height zapex = 1m at tapex = 1s
from a static standing configuration, and then settle back to
its original height at tf = 1.8s. The initial condition is set
as x0 = (z(0), ż(0), L(0), L̇(0))T = (.65, 0, .75, 0)T . The
input is bounded, i.e., u ∈ U = [−10, 10]. The cost function
is

J(x) =(z(tapex)− zapex)2 + ż(tapex)2+

(z(tf)− z(0))2 + ż(tf)
2 +

∫
u2dt.

To approximate a solution to the problem numerically,
we use the regularization parameter ε = .01, and Euler
integration with 200 uniformly spaced gridpoints. The re-
sulting finite dimensional optimization problem is solved
using the Matlab fmincon function. The optimized Spring-
mass trajectory is shown in Fig. 2 (b). Due to the actuation
limitations of the model, the optimized hopping actually
requires two hops to reach to the apex height and one
additional hop to settle.

VI. HOPPING EMBEDDING ON THE EXOSKELETON

Despite the simplicity of the Spring-mass hopper, the
optimized dynamics can be embedded onto complex robotic
systems. Here we briefly describe the process of embedding
the hopping dynamics of the Spring-mass onto the exoskele-
ton (Fig. 3 (a)), using the trajectory of the spring-mass
hopper to define outputs to track on the full-order model.
A QP-CLF optimization based controller is implemented to
track the desired outputs online. More examples of dynamics
embedding from simple models to full robot models can be
found in [9] [1] [10] and the references therein.
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A. Robot Model and Hybrid Dynamical Model

The exoskeleton (Exo) has two legs with 12 motor joints
in total. Its equations of motion can be described by the
floating-base Euler-Lagrange equation,

Mq̈ + h = Bu+ JTv Fv, (19)
Jv q̈ + J̇v q̇ = 0, (20)

where q ∈ SE(3)×Rn=12. The exact meaning of each term
can be found in [9]. For the hopping behavior, we assume
the two feet always have same contact, i.e. either both feet
are or are not in contact with the ground. Thus the hopping is
an alternation between two domains, i.e. Ground and Flight
domain. We use subscript v to denote different domains.
The guards are defined from the transition conditions, i.e.
ground normal forces→0 and foot position→0. We model
the impact as plastic impact from Flight→Ground, where
the joint velocities have jumps, i.e., q̇+Ground = ∆(q)q̇−Flight.

B. Output Selection and CLF-QP based Force Control.

For Ground, the robot is fully actuated and 6 outputs
are required to be defined. We first select the center of
mass (COM) position and the yaw and roll angles of the
pelvis/torso of the robot as relative degree 2 outputs, i.e.,

YGround
2 (q, t) =




pCOMx(q)
pCOMy (q)
pCOMz (q)
ϕpelvis(q)


−




0
0

zopt(t)
0


, (21)

where zopt(t) is the mass trajectory generated by the trajec-
tory optimization in the previous section. It is also necessary
to have zero centrodial angular momentum before Flight
phase [9]. We select the last output as,

YGround
1 (q, t) = Hpitch(q, q̇)− 0, (22)

where Hpitch(q, q̇) is the pitch centrodial momentum.
In Flight, the robot is underactuated. Here, 12 outputs are

required to be defined since nu = 12. We selected the outputs
as the positions of the feet to the COM and foot orientations.
The desired vertical positions between the COM and the feet
are the real leg length L− z of the Spring-mass hopper,

YFlight
2 (q, t) =




pxFeet→COM(q)
pyFeet→COM(q)
pzFeet→COM(q)
ϕFeet(q)


−




0
c

Lopt(t)− zopt(t)
0


, (23)

where c is a constant vector and its value depends on the
initial state of the flight phase.

We employ control Lyapunov function based Quadratic
programs (CLF-QP) [27] [1] for feedback-zeroing the out-
puts. Exponential convergence on the output dynamics is
enforced by an inequality condition on the constructed Lya-
punov function, i.e.,

V̇ (u, q, q̇) ≤ −γV (q, q̇), (24)

with γ > 0. This inequality is affine with respect to u,

ACLF
v (q, q̇)u ≤ bCLF

v (q, q̇). (25)

External holonomic constraints, such as the holonomic
forces Fv , are affine with respect to u and can be collected
as

Fv = Avu+ bv, (26)

where Av, bv can be found in [10]. Thus contact constraints
such as friction cones and non-negative normal forces can
be formulated as an inequality constraints on u,

CvAvu ≤ −Cvbv, (27)

where Cv is a constant matrix. It is also desirable to track
the ground reaction forces experienced by the reduced model
on the full-order order robot so that the two systems lift off
from the ground at approximately the same time. This desired
constraint is of the form

SvAvu = F opt − Svbv, (28)

where Sv is a selection matrix to extract the vertical normal
forces from the holonomic force vector and F opt is the leg
force from the Spring-mass optimization (Fig. 3 (b)). It is
necessary to relax the force control since the vertical COM
position is one of the outputs for control [10]. Thus the
equality in Eq. (28) becomes,

(1− c)F opt − Svbv︸ ︷︷ ︸
clb

≤ SvAvu ≤ (1 + c)F opt − Svbv︸ ︷︷ ︸
cub

, (29)

where c ∈ (0, 1) is a coefficient of relaxation.
The main control law for the full-order model in each

domain is thus formulated as a quadratic program as follows:

u∗ = argmin
u∈R12,δ∈R

uTHu+ 2Fu+ pδ2, (30)

s.t. ACLF
v (q, q̇)u ≤ bCLF

v (q, q̇) + δ, (CLF)
CvAvu ≤ −Cvbv, (Contact)
ulb ≤ u ≤ uub, (Torque Limit)
clb ≤ SvAvu ≤ cub, (Force Control)

where δ is a relaxation term for increasing the instantaneous
feasibility of the QP, and p is a positive penalty constant.

C. Simulation Result

Fig. 3 (c)(d) shows the resulting hopping motion of the exo
when the CLF-QP controller is used to track the nominal
outputs generated by the spring-mass model. The tracking
controller is able to closely track the reference generated
by the active SLIP model as the exo repeatedly makes and
breaks contact with the ground.

VII. CONCLUSION

This paper investigated a method for smoothing out a
discontinuous differential equation. We studied optimal con-
trol problems over the discontinuous system and its regu-
larizations, derived a number of useful properties for these
problems and examined conditions under which the regular-
izations can be used to obtain accurate derivative information
about the non-smooth problem. Finally, we demonstrated the
efficacy of the smoothing approach by using it in conjunction
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Fig. 3: (a) The Exoskeleton. (b) The optimized ground force of the hopping. (c) Comparison of the COM trajectories between
the Spring-mass and the Exo. (d) The snapshots of the realized hopping.

with recent reduced-order modelling techniques to generate
non-trivial motion plans on a 18-DOF exoskeleton robot in
simulation. In the near future we hope to extend the results
of this paper to the case of fully hybrid dynamics, building
on the work of [20].
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