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Abstract— A Hybrid passive Linear Inverted Pendulum (H-
LIP) model is proposed for characterizing, stabilizing and com-
posing periodic orbits for 3D underactuated bipedal walking.
Specifically, Period-1 (P1) and Period-2 (P2) orbits are geomet-
rically characterized in the state space of the H-LIP. Stepping
controllers are designed for global stabilization of the orbits.
Valid ranges of the gains and their optimality are derived. The
optimal stepping controller is used to create and stabilize the
walking of bipedal robots. An actuated Spring-loaded Inverted
Pendulum (aSLIP) model and the underactuated robot Cassie
are used for illustration. Both the aSLIP walking with P1 or P2
orbits and the Cassie walking with all 3D compositions of the P1
and P2 orbits can be smoothly generated and stabilized from a
stepping-in-place motion. This approach provides a perspective
and a methodology towards continuous gait generation and
stabilization for 3D underactuated walking robots.

I. INTRODUCTION
Trajectory optimization has been widely used for planning

periodic motion on 3D underactuated walking of bipedal
robots. Advanced numerical techniques [2] [3] have been
investigated for achieving fast performance. Model-based
control methods [4] [5] are developed for trajectory stabi-
lization. However, trajectory optimization on the full dimen-
sional model is still unlikely to be made fast enough to be
performed online. The formulated nonlinear optimization is
also subject to local minima. Moreover, stabilization on the
optimized periodic motion is non-trivial, especially when the
yielded hybrid zero dynamics itself is not stable [6].

An alternative approach for motion planning for walking
is through simplified conceptual models, e.g., the Linear
Inverted Pendulum (LIP) [7] [8] and the Spring-loaded
Inverted Pendulum (SLIP) [9] [10] models. The simplified
models are viewed either as approximations to the actual
dynamics or as templates for the systems to embed. For
instance, the zero moment point (ZMP) approach [8] can
be viewed as embedding the template LIP dynamics into the
robot’s center of mass (COM) dynamics. The embedding
approach has also appeared in the literature [11] [12] [13]
[14] on the SLIP models. However, the direct embedding is
problematic for underactuated walking due to the lack of full
control authority on the COM.

When the simplified models are used as approximations
to the full systems, they often serve for both planning and
stabilization. For instance, the LIP model is used in [7]
to plan the capture point for stabilization of the COM to
desired states. An actuated SLIP model is proposed in [15]
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Fig. 1. Overview of the stabilization from H-LIP model to aSLIP model
and to the robot model of Cassie

for planning the leg length trajectories for enabling and
stabilizing walking in the sagittal plane of the robot Cassie.

The stabilizations via simplified models are actually feed-
back planning on the desired trajectories to stabilize the
COM dynamics. For instance, the SLIP model is used in
[16] for planning the footstep stabilization for the running
velocity. Additional planning methods such as touch-down
angle adjustment [17] and swing leg retraction [18] have
also been proposed in the literature. However, by and large,
such feedback planning via simplified models is designed by
heuristics and parameter tuning or searching is inevitable.

Contributions. In this paper, we propose a Hybrid-Linear
Inverted Pendulum (H-LIP) model for formal step planning
for 3D underactuated walking without gain tuning. We first
characterize its periodic orbits, including Period-1 (P1) and
Period-2 (P2) orbits, and then synthesize velocity-based
stepping controllers for global stabilization. We further prove
the stabilization and identify the valid ranges of the feedback
gains, including the optimal ones.

The H-LIP stepping stabilization can be used for its
approximated complex walking systems. We first validate the
H-LIP stepping stabilization on the walking of an actuated
SLIP (aSLIP) [15]. The stepping stabilizes a stepping-in-
place motion and generates different P1 and P2 orbits with
a wide range of target velocities. Moreover, for 3D under-
actuated walking, the compositions of P1 and P2 orbits in
the sagittal and coronal planes yield four types of walking
behaviors. We apply the H-LIP stepping for constructing
desired swing foot positions for the walking of the 3D
robot model of Cassie [19]. Walking gaits with all four
compositions can be smoothly generated and stabilized from
a stepping-in place motion to different target velocities.
The proposed work thus provides a new methodology for
characterizing and synthesizing continuous periodic walking
for 3D underactuated bipedal walking via the H-LIP.
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II. ORBIT CHARACTERIZATION AND STABILIZATION FOR
THE HYBRID LIP MODEL

The canonical Linear Inverted Pendulum (LIP) model
is composed by a constant-height point mass attached on
telescopic legs with actuated support pivots [8]. It has been
used as a target walking system to provide the desired
COM dynamics of walking for the full robot to embed.
The passive version of LIP (without actuation on the pivots)
has also appeared in the literature [7] [20] [21] for footstep
planning to mitigate the overuse of ankle torques. [15] also
suggests that the passive LIP dynamics can be used to
approximate the lateral underactuated rolling dynamics of
a full dimensional robot with passive feet. Here we formally
present a hybrid version of the passive LIP (Hybrid-LIP) and
study its periodic behaviors.

A. The Hybrid-LIP Model of Walking

The Hybrid-LIP is the passive LIP model with two support
legs. Based on the number of feet in contact with the ground,
the walking of H-LIP is described by single support phase
(SSP) and double support phase (DSP) (Fig. 2 (a)). We
assume that in SSP the point mass dynamics is identical
to that of the passive LIP, and that in DSP it has constant
velocity. The dynamics can thus be written as,

ẍ = λ2x, (SSP)
ẍ = 0, (DSP)

where λ =
√

g
z0

, and z0 is the nominal height of the
point mass. The transition from SSP to DSP, ∆S→D, and
the transition from DSP to SSP, ∆D→S, are assumed to be
smooth, thus the impact maps are defined as:

∆S→D :

{
ẋ+ = ẋ−

x+ = x−
, (1)

∆D→S :

{
ẋ+ = ẋ−

x+ = x− − l , (2)

where l is the step length from the stance foot position to the
landing foot. The second map of the position is changing the
support leg. The transitions are assumed to be time-based; in
other words, the durations of the two domains, {TSSP, TDSP},
are fixed. The closed-form solution can be found:

SSP :

{
x(t) = c1e

λt + c2e
−λt

ẋ(t) = λ(c1e
λt − c2e−λt)

, (3)

DSP :

{
x(t) = x−SSP + ẋ−SSPt
ẋ(t) = ẋ−SSP

, (4)

where c1 = 1
2 (x+SSP + 1

λ ẋ
+
SSP) and c2 = 1

2 (x+SSP −
1
λ ẋ

+
SSP).

Note that the H-LIP model can be in 3D. The dynamics in
the each plane are identical and completely decoupled.

Remark 1.1 Compared to the passive LIP in [7] [22],
our H-LIP has the DSP and fixed domain durations. The
addition of the DSP immediately rectifies the smooth impact
assumption for compliant walking. The assumption on fixed
domain durations will be self-evident in the later sections.

𝑥
𝑧 𝑙 𝑧

SSP DSP

(a)

(c) (d)
0.2 0 0.2

1

0

1

𝑥 ሺmሻ

𝑥ሶ ሺm/s
ሻ E>0

𝜆
𝑥ሶ ൌ 𝜎ଶ𝑥  𝑑ଶ𝑥ሶ ൌ െ𝜎ଶ𝑥  𝑑ଶ

(b)

0.2 0 0.2
1

0

1

𝜎ଶ𝑥ሶ ሺm/s
ሻ

0.2 0 0.2
1

0

1

𝜎ଵ

𝑥ሶ ൌ 𝜎ଵ𝑥𝑥ሶ ൌ െ𝜎ଵ𝑥

𝑥 ሺmሻ

𝑥ሶ ሺm/s
ሻ

𝑥 ሺmሻ

E<0 E<0

E>0

𝑥

Fig. 2. (a) Illustration of the two domain walking of the H-LIP model. (b)
The phase portrait of the H-LIP in the SSP. (c) The P1 orbits of the H-LIP
and the time-lapse figures of the orbits. (d) The P2 orbits of the H-LIP and
the time-lapse figures of the orbits.

B. Geometric Characterization of Periodic Orbits

Periodic orbits are used to describe walking of the H-LIP.
Here we study Period-1 (P1) and Period-2 (P2) orbits of
the H-LIP. P1 orbits are the one-step orbits, i.e., states with
each leg as the stance leg that evolve on the same orbits. P2
orbits are the two-step orbits. Fig. 2 (c)(d) show the examples
of both orbits in the phase portrait of the H-LIP. The solid
lines on the orbits represent the states in SSP, and the dashed
straight lines on the orbits represent the jumps between SSP.
The orbits in DSP is not explicitly represented for clarity.

The phase portrait of the H-LIP in SSP are divided into
four regions by the asymptotes, i.e. the straight lines ẋ =
±λx in Fig. 2 (b). The asymptotes characterize the states
with zero orbital energy, which is,

E(x, ẋ) = ẋ2 − λ2x2. (5)

For the H-LIP, the orbital energy is conserved in the SSP.
The asymptotes also separate the state space into E > 0 and
E < 0 regions. Since ẋ+SSP = ẋ−SSP, one can quickly verify
that P1 orbits only exist in the E > 0 regions, and that P2
orbits can exist in either E > 0 or E < 0 regions.

1) Period-1 Orbits: For the ease of understanding, we first
characterize the P1 orbits.

Theorem 1.1 For all the Period-1 orbits, the initial states
[x+SSP; ẋ+SSP] and the final states [x−SSP; ẋ−SSP] are on the line
ẋ = −σ1x and the line ẋ = σ1x, respectively, where

σ1 := λcoth
(
TSSP

2
λ

)
, (6)

is called the orbital slope. The lines ẋ = ±σ1x are called
the orbital lines of characteristics. Each state on the orbital
line ẋ = −σ1x is an initial state of the SSP of a unique
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Period-1 orbit with the step length being,

l1 = x−SSP + ẋ−SSPTDSP +
ẋ−SSP

σ1
. (7)

Proof. Since ẋ+SSP = ẋ−SSP and E+
SSP = E−SSP, we have

x+SSP = −x−SSP. Substituting these conditions into the Eq. (3)
with simple algebra manipulation yields,

ẋ+SSP

x+SSP
= −λcoth

(
TSSP

2
λ

)
, (8)

which indicates that the initial states are on the line ẋ =
−σ1x. The rest of the theorem follows immediately. �

Fig. 2 (c) illustrates different P1 orbits of the system,
each of which has a different net velocity. Without further
illustration, one can find that there exist infinite number of
P1 orbits, and they are all connected. Given a desired net
velocity vd, there exists a unique P1 orbit with the boundary
velocity of the SSP being,

ẋ−∗SSP =
vd(TDSP + TSSP)

2
σ1

+ TDSP
. (9)

2) Period-2 Orbits: For P2 orbits, we index the support
legs by its left leg L and right leg R. By the constant velocity
in DSP, Lẋ−SSP = Rẋ

+
SSP and Lẋ

+
SSP = Rẋ

−
SSP. The following

theorem characterizes P2 orbits.
Theorem 1.2 For all the Period-2 orbits, the orbital lines

of characteristics are ẋ = ±σ2x+d2, where the orbital slope
σ2 is,

σ2 := λtanh
(
TSSP

2
λ

)
, (10)

and d2 is a constant offset determined by the desired net
velocity. Each state on the line ẋ = −σ2x+ d2 represents a
Period-2 orbit, with the step length,

l2 = x−SSP + TDSPẋ
−
SSP +

ẋ−SSP − d2
σ2

. (11)

By the definition of orbital lines of characteristics, the
immediate interpretation of the theorem is that: the initial
states [x+SSP; ẋ+SSP] lie on the line ẋ = −σ2x + d2, and the
final states [x−SSP; ẋ−SSP] lie on the line ẋ = σ2x+d2. We first
present the following corollary to prove this theorem.

Corollary 1.3 In SSP, any initial states on the line of
ẋ = −σ2x+d2 flow to the line ẋ = σ2x+d2 after t = TSSP,
with σ2 defined in Eq. (10) and d2 being a constant.

Proof. This is evident by applying the closed form solution
from Eq. (3) with t = TSSP. Given ẋ+SSP = −σ2x+SSP + d2,
one can verify that ẋ−SSP − σ2x

−
SSP − d2 ≡ 0. �

Proof of Theorem 1.2. We start by selecting a state on
the line ẋ = −σ2x+ d2 as the initial state of the SSP with
the left leg being the support leg of the H-LIP, i.e. Lẋ+SSP =
−σ2Lx+SSP + d2. By Corollary 1.3, the final state satisfies
Lẋ
−
SSP = σ2Lx

−
SSP + d2. Applying the impact map in Eq.

(1) yields Lẋ
+
DSP = Lẋ

−
SSP, Lx

+
DSP = Lx

−
SSPTDSP − Lẋ

−
SSP−d
σ2

.
After the DSP in Eq. (4), with the impact map in Eq. (2),

Rẋ
+
SSP = Lẋ

−
DSP,Rx

+
SSP = −Lẋ

−
SSP−d
σ2

= −Rẋ
+
SSP−d
σ2

, which

indicates that the initial state of SSP with right leg as the
support is on the line ẋ = −σ2x+ d2 again. Taking another
step, the system goes back to its original state when left leg
becomes the support. Therefore, the initial state on the line
creates a P2 orbit with the step length in Eq. (11). �

Unlike the P1 orbits, for which only one orbit can be found
to achieve certain desired velocity, there are infinite P2 orbits
to achieve a certain desired velocity. The result is stated in
the following proposition.

Proposition 1.4 There exist infinite Period-2 orbits to
achieve a desired net velocity vd. The initial states of the SSP
of all the periodic orbits for vd lie on the line ẋ = −σ2x+d2
with d2 being,

d2 =
λ2sech(TSSP

2 λ)(TSSP + TDSP)vd

λ2TDSP + 2σ2
. (12)

Proof. Based on Theorem 1.2, selecting any initial state
[Lx

+
SSP, Lẋ

+
SSP] on the line ẋ = −σ2x+ d2 yields a P2 orbit.

The traveled distance over the P2 orbit is 2(Lx
−
SSP−Lx

+
SSP)+

TDSP(Lẋ
+
SSP + Lẋ

−
SSP). It equals to 2(TSSP + TDSP)vd. �

Orbit Composition. When the H-LIP is in 3D, the orbits
can be selected individually for each plane. The composition
of P1 and P2 orbits in each plane consequently yields four
categories of walking orbits, i.e. P1-P2, P1-P1, P2-P1, and
P2-P2 orbits. This will be further illustrated later in the 3D
underactuated walking of Cassie.

Equivalent Characterization. It can also be shown that
ẋ = ±σ2x + d2 can characterize P1 orbits, and that ẋ =
±σ1(x + d1) can characterize P2 orbits subject to certain
conditions. This part is omitted due to the space limit.

C. Orbit Stabilization via Stepping

In this part, we present the stabilization of the orbits of the
H-LIP. Since the system is purely passive in each domain,
the stabilization can only be done by manipulating the impact
map, i.e. changing the step length l. We present the following
two theorems for the stabilization.

Theorem 2.1 Given a desired Period-1 orbits with σ1 in
Eq. (6), ẋ−∗SSP in Eq. (9) and l1 in Eq. (7), the following step
length,

lcl1 = l1 +K(ẋ−SSP − ẋ
−∗
SSP), (13)

can globally stabilize the H-LIP with the K in,

0 < K <
2

λ
csch(TSSPλ), (14)

and the optimal gain,

K∗ =
1

λ
csch(TSSPλ), (15)

globally stabilizes the velocity by one step and the position
by two steps.

Proof. The desired pre-impact state of SSP of the H-LIP is
[x−∗SSP =

ẋ−∗
SSP
σ1
, ẋ−∗SSP]. To prove this stabilization, we first show

that the step to step velocity is contracting to the desired
velocity ẋ−∗SSP; in other words,∣∣

i+1ẋ
−
SSP − ẋ

−∗
SSP

∣∣ = c
∣∣
iẋ
−
SSP − ẋ

−∗
SSP

∣∣ , (16)
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Fig. 3. (a) Stabilization of the H-LIP to a desired P1 orbit from three
random initial states. (b) Stabilization to a P2 orbit. (c) Comparison of the
gain K on x−

SSP, ẋ
−
SSP for stabilization to the P1 orbit from the same initial

state. (d) Comparison of the gain K for stabilization to the P2 orbit from
the same initial state.

with 0 < c < 1, where i and i+1 index the current step and
the next step, respectively. Suppose that we have an arbitrary
preimpact state [ix

−
SSP, iẋ

−
SSP]. By the impact maps in Eq. (1)

(2) with lcl1 and closed-form solutions in Eq. (3) (4), the
preimpact velocity of next step satisfies,

i+1ẋ
−
SSP− ẋ

−∗
SSP = (1−Kλsinh(TSSPλ))(iẋ

−
SSP− ẋ

−∗
SSP). (17)

Obviously, K must be in the range in Eq. (14) so that the
contracting mapping in Eq. (16) is satisfied. Otherwise, the
velocity error stays the same or increases. Additionally, for
the position,

i+1x
−
SSP−x

−∗
SSP = (

1

σ1
−Kcosh(TSSPλ))(iẋ

−
SSP−ẋ

−∗
SSP). (18)

Thus x−SSP → x−∗SSP as ẋ−SSP → ẋ−∗SSP, which proves the
stabilization of the position subsequently after the velocity.

Lastly, plugging the optimal gain of Eq. (15) into Eq.
(17) and (18) indicates that i+1ẋ

−
SSP = ẋ−∗SSP and i+2x

−
SSP =

x−∗SSP for arbitrary states [ix
−
SSP, iẋ

−
SSP], which means that, the

velocity is stabilized by one step and the position is stabilized
by two steps. �

Theorem 2.2 Given a desired Period-2 orbit with σ2 in
Eq. (10), l2 in Eq. (11) and desired boundary velocities
Lẋ
−∗
SSP,Rẋ

−∗
SSP, the following step length,

lcl2 = l2 −K(ẋ−SSP − L/Rẋ
−∗
SSP), (19)

can stabilize the H-LIP globally with the K in Eq. (14). And
the optimal gain in Eq. (15) stabilizes the velocity by one
step and the position by two steps globally.

The proof is similar to the previous one and thus is
omitted. In our previous work [15], the feedback stepping
control law was used to stabilize the lateral balance of the
underactuated walking of Cassie with zero lateral velocity,
i.e. d2 = 0. Here the stabilization law in Eq. (19) is stated
for the general case for all P2 orbits.

Fig. 3 (a) (b) illustrates the stabilization of this stepping
with the optimal gain to a P1 and a P2 orbit from random
initial states. Additionally, different gains are compared for
the stabilization in Fig. 3 (c) (d).

Remark. 1.2 One may think that this stepping controller
is a variant of the Raibert style stepping controller [16]
[23]. However, the Raibert style controllers are oftentimes
implemented as PID/PD terms. Heuristic tuning is required.
Here the optimal gain eliminates the tuning process com-
pletely. There are also additional interesting properties of
the stabilization, which are omitted due to the space limit.

III. ASLIP WALKING VIA H-LIP STEPPING

The orbits of the H-LIP are all connected and can be sta-
bilized. We posit the same characterization and stabilization
can be readily applied to similar hybrid locomotion systems.
In this section, we use an actuated Spring-loaded Inverted
Pendulum (aSLIP) model [15] to illustrate this. The H-LIP
stepping is a periodic behavior with constant durations, thus
the aSLIP walking should start from a periodic behavior.

We first generate a periodic walking-in-place motion via
trajectory optimization. The walking-in-place motion repre-
sents the origin of the H-LIP in its state space. Then we apply
the walking stabilization based on H-LIP to stabilize the
aSLIP walking smoothly from the origin to different orbits
with different speeds. The periodic push-off and touch-down
are preserved from the periodic actuation of the leg length
from the walking-in-place motion. We demonstrate that both
P1 and P2 orbits can be stabilized with negligible velocity
errors. It is important to emphasize that the trajectory opti-
mization is only performed once to generate a single gait.
The rest of the walking orbits are naturally generated and
stabilized via the H-LIP stepping.

A. Hybrid Model of the aSLIP Walking

The actuated Spring-loaded Inverted Pendulum (aSLIP)
model in [15] was introduced to approximate the dynamics
of the robot Cassie. Despite the mild complexity added com-
paring to canonical SLIP models, it well approximates the leg
dynamics including the actuated parts and the underactuated
compliant springs. Our previous work on hopping [19] and
walking [15] of the full robot Cassie have provided evidence
for this. We posit that the aSLIP can also be applied for other
pogo-stick style robots, such as MABLE [24], ATRIAS [23],
ARL-Monopod [25].

The main differences of the aSLIP compared to the
canonical SLIP are two folds. First, the aSLIP model has a
prismatic spring with nonlinear stiffness and damping, which
are functions of the leg length L. Second, the actuation is
enabled via the change of the leg length, i.e. L̈.

The aSLIP walking is modeled as a hybrid dynamical
system with two domains, i.e. SSP and DSP (Fig. 4 (a)).
The transition from DSP to SSP happens when the ground
reaction forces on one leg reach to 0; the transition from
SSP to DSP happens when swing foot strikes the ground.
The dynamics in each domain and the impact maps can be
found in the Appendix.
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Fig. 4. (a) Illustration of the two domain walking of the aSLIP model.
(b) Trajectories of the leg length, force and mass height of the optimized
walking-in-place gait.

B. aSLIP Trajectory Optimization and Feedback Control

We apply the same formulation of trajectory optimization
via direct collocation in [15] to generate a periodic walking-
in-place gait. The same periodic orbit will be also used for
the robot Cassie in the next section.

In the trajectory optimization, we mainly enforce the do-
main constraints such as admissible ground reaction forces,
swing foot positions, ranges of domain durations, zero
walking speed and leg length ranges. The trivial swing
leg dynamics is also included in optimization for periodic
trajectories. The cost is on the virtually consumed energy,
i.e.
∑
L̈2. Fig. 4 (b) shows one optimized gait of the aSLIP

walking-in-place.
It is worth noting that the trajectory optimization can

generate walking gaits with various step length or velocities.
However, in this paper, we only optimize for one single
gait. The purpose is to demonstrate that infinite gaits can
be generated from a single gait via the H-LIP stepping.

The control of the aSLIP is realized by the zeroing the
defined outputs. The optimized trajectories of the leg length
L(t)d is used as the desired output trajectory for controlling
the aSLIP walking. As we assume the L̈i are the inputs,
trajectory tracking of the leg length can be realized via the
linear feedback controller,

L̈i = L̈di −Kp(Li − Ldi )−Kd(L̇i − L̇di ). (20)

Since the swing leg of the aSLIP in SSP has no dynamics,
the step length can be directly set to the desired value. The
following smoothing is used to transit the swing leg to the
desired step length.

l(t) = (1− c(t))l0 + c(t)ld(t), (21)

where ld(t) is the desired step length, c(t) is a smooth
function from 0 to 1 with appropriate timing, and l0 is the
step length from previous step.

C. Gait Stabilization and Generation via H-LIP stepping

For the stepping-in-place, the desired velocity vd is 0. Both
Eq. (13) lcl1 and Eq. (19) lcl2 from the H-LIP can be applied.
In the state space [x, ẋ] of the point mass, the stepping-in-
place is represented by the origin. When a non-zero desired
velocity vd is commanded, the H-LIP stepping stabilizes the
aSLIP walking to the desired velocity. Fig. 5 (a) (b) shows
the stabilization of the aSLIP walking from 0 m/s to the
desired non-zero velocities.

The stabilization via Eq. (13) lcl1 automatically generates
P1 orbits, and stabilization via Eq. (19) lcl2 automatically
generates P2 orbits. The generated P1 orbits are unique to
a specific vd (Theorem 1.1 for H-LIP); while to a specific
vd it can generate infinite number of P2 orbits, each of
which corresponds to a specific boundary position L/Rx

−d
SSP

(Theorem 1.2). Lx
−d
SSP is selected to be −0.05m in thw

walking in Fig. 5 (a3) (a4). Fig. 5 (c) (d) illustrate the
convergence of the stabilization via H-LIP stepping in terms
of the leg force, velocity, domain duration and step length.

Since the leg length repeats the same trajectory from the
stepping-in-place optimization, the sum of the durations of
the SSP and the DSP is guaranteed to be consistent across
any orbits populated from the stepping-in-place orbit. It is
expected that the leg internal behavior varies smoothly with
respect to the variation of the forward velocity, so is the
whole system behavior. Fig. 5 (e) shows the stabilization to
P1 orbits with velocities from 0.1−0.9 m/s. As expected, the
converged TSSP ↘ smoothly and the leg length l↗, as vd ↗
smoothly. All converged velocity errors are within 10%,
indicating the success of gait generation and stabilization
via H-LIP stepping.

Comparison with a heuristic controller. We also com-
pare the H-LIP stepping stabilization with canonical Raibert
style stepping controller [26] [16], in the form of ld =
l0 +Kp(vi − vd) +Kd(vi − vi−1), where l0 is the nominal
optimized step length, Kp,Kd are the tunable proportional
and derivative gains and i, i − 1 index the current step and
previous step.

Since the H-LIP contains a similar proportional term,
we only add the derivative term to the H-LIP stepping
(Eq. (13), (19)). This can reduce the parameter space to
be numerically explored. Fig. 5 (f) shows the comparison
with different Kd values. The optimal K∗ = 0.1832 from
the H-LIP stepping; the Kd is set within [−0.04, 0.04]. The
step length is used as the criterion on the stabilization. As
the results in the figure indicate, it is not evident if the
derivative term can improve the stabilization. In our opinion,
the additional derivative term is a placebo that has existed in
previous literature on bipedal walking, especially considering
the facts: firstly, the H-LIP can already stabilize the system;
secondly, inappropriate selection of Kd can destabilize the
system.

Remark 1.3 Stabilization of the aSLIP walking is not a
trivial task. The leg-axial oscillation needs to couple with
the rotational oscillation about the support foot. Previously
in [15], we used a leg length scaling approach to update
the desired leg length trajectories based on forward velocity
errors, which worked well with phase-based output updates
and nonzero velocity walking. The phase-based output up-
date naturally creates a coupling between the rotational and
leg-axial oscillations. The H-LIP stepping stabilization also
creates an equivalent coupling via the state-dependent (x, ẋ)
H-LIP stepping. Moreover, the H-LIP stepping propagates
and stabilizes infinite orbits from a single stepping-in-place
walking, which eliminates the tedious and extensive numer-
ical optimization process.
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Fig. 5. (a) The time-lapse figures of walking from stepping-in-place to various speeds. (b) The phase plots of the mass state [x, ẋ] of the walking. The
black orbits indicate the desired orbits of the H-LIP for the same velocities. (c) The leg forces F and mass velocity ẋ v.s. time of the (a2) (indicated by
red) and (a4) (indicated by blue) walking. (d) The durations of the SSP TSSP and the step length l of the (a2) and (a4) walking. (e) The converged TSSP,
l and velocity error for P1 walking with speeds 0.1 to 0.9 m/s. (f) Comparison of adding derivative terms on stabilizing the walking with vd = 0.3 m/s.

IV. 3D UNDERACTUATED WALKING STABILIZATION,
GENERATION AND COMPOSITION VIA H-LIP STEPPING

The H-LIP stepping has shown success on the aSLIP
walking generation and stabilization, despite that the aSLIP
model is obviously not identical to the H-LIP model. The
aSLIP is an approximated model of the robot Cassie [19],
thus we apply the same H-LIP stepping on the walking of
Cassie. Since the robot is in 3D, P1 and P2 orbits with
their associated stabilizations can be selected for each plane
separately, which further renders four kinds of compositions
for walking.

Similarly, to apply the H-LIP stepping, the robot Cassie
should start from a periodic behavior. The same periodic
trajectory of leg length actuation of the aSLIP is applied
to preserve the periodic push-off and touch-down behaviors.
The H-LIP stepping provides the step sizes based on the
selection of P1 and P2 orbits in each plane, which not only
stabilizes the stepping-in-place motion but also generates
different walking motion with different target velocities from
the stepping-in-place walking.

A. Robot Model and Hybrid Model of Walking

The robot model of Cassie [27] has been detailed in
previous paper [19]. It is important to note that [28] intro-
duced a rigid model of Cassie for the ease of numerical
gait generation, which leads to a 20 dof model with two
holonomic constraints on each leg. In other words, the
springs on the robot were assumed rigid in [28]. Our robot
model still includes all the compliant springs, which, in
our viewpoint, are the main characteristics of the robot. The
spring dynamics dominates the internal leg dynamics. In
[19] and [15], we introduced the leg spring approximation
for creating hopping and walking on Cassie, which also
evidenced that the springs are critical.

As for the model of walking, we continue using the hybrid
model of walking with two domains, i.e. SSP and DSP.

The details can be found in [15]. The existence of the DSP
naturally comes from the compliant springs in the legs. The
two domain walking model also reflects back to the two
domain walking of the H-LIP and the aSLIP.

B. Output Definition and Output Stabilization via CLF-QP

We start from a stepping-in-place motion of Cassie. The
motion is encoded via the definitions of the outputs. The
leg length trajectory from the aSLIP is used on Cassie.
Additional output definitions in SSP are similar to those
described in [15], such as the pelvis orientation, swing foot
orientation, and the step width. The difference is that the
swing leg angle output is replaced by the forward step length,
which is the distance between two toes in the sagittal plane.
The output definitions in DSP are identical to those in [15].

The application of the H-LIP stepping is realized in SSP
by the continuous construction of the desired step length in
the sagittal plane and the desired step width in the coronal
plane. The construction is similar to Eq. (21). Feedback
zeroing the outputs, i.e. trajectory tracking, is implementated
by the control Lyapunov function based quadratic programs
(CLF-QPs) [15] [19], which includes the torque limits and
contact constraints in the QP.

C. Gait Composition, Generation and Stabilization

Now we generate and stabilize the walking of Cassie in
3D. We first compose the P1 and P2 orbits in the sagittal and
coronal planes into 3D walking. The H-LIP stepping is then
applied for stabilization and generation of walking based on
the composition.

Both the P1 and P2 orbits can be realized in each plane.
The composition yields four kinds of gaits in 3D. Let sP1-
cP2 denote that a P1 orbit is realized in the sagittal plane
and a P2 orbit in the coronal plane. Then the other three are
sP1-cP1, sP2-cP2 and sP2-cP1. In general, all four gaits can
be realized for a specific velocity of walking, without con-
sidering the kinematic constraints, which typically include
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Fig. 6. Simulation results of orbit composition and stabilization on Cassie via H-LIP stepping. (a) The phase plots of the robot in sagittal and lateral
planes for stabilization of walking to (1: ẋ → 0.2, ẏ → 0), (2: ẋ → 0, ẏ → 0.2), (3: ẋ → −0.25, ẏ → −0.25), (4: ẋ → 0.25, ẏ → −0.15) from
stepping-in-place. The black orbits are the ones of the H-LIP with same desired velocities. (b) The forward and lateral velocities ẋ, ẏ v.s. time. (c) The
forward and lateral positions x, y v.s. time. (d) The convergence of the domain durations TDSP (blue), TSSP (red). (e) The convergence of the step length
and step width in each plane. (f) The time-lapse figures of the walking motions.

that the step location shall be away from the stance location
and that legs shall not cross. The avoidance of kinematic
conflicts is out of the scope of this paper.

Fig. 6 illustrates the simulation results of the stabilization
and generation of Cassie walking to different velocities with
different orbit compositions. The stabilization starts from the
stepping-in-place, then a nonzero velocity is commanded at
about t = 3.5s. For example, gait (1) is realized by a sP1-
cP2 orbit with desired velocity (ẋ→ 0.2, ẏ → 0), as shown
in its phase plots. Gait (2) is realized by a cP1-sP2 orbit
with desired velocity (ẋ → 0, ẏ → 0.2). Since the hybrid
periodic walking behaviors of Cassie is similar to that of the
H-LIP, the converged orbits are close to the ones of the H-
LIP, as shown in Fig. 6(a). The velocities and step sizes also
converge to the desired ones quickly. Additional simulation
videos can be found in [1].

V. CONCLUSION

In this paper, a Hybrid passive Linear Inverted Pendulum
(H-LIP) model is proposed for orbit characterization, stabi-
lization, and composition for 3D underactuated bipedal walk-
ing. We demonstrate that the closed-form stepping controllers
with the optimal gains from the H-LIP can stabilize the
stepping-in-place walking and smoothly generate the walking
to different desired velocities for the aSLIP model and the
robot model of Cassie. The characterized H-LIP orbits can
compose into four kinds of walking orbits for 3D walking.
Stabilization and generation of the composed orbits with
different desired velocities can be realized simply via the
H-LIP stepping with no gain tuning.

The theoretical guarantee is yet to be established on
the stabilization from the H-LIP to complex hybrid models
of walking. We posit that the hybrid nature of alternating

support legs is the key to the success. Moreover, the orbit
characterization and stabilization on the 3D walking via
the H-LIP stepping also provide interesting perspectives as
follows.

Towards Bipedal Gait Categorization. Periodic gaits
have been well categorized for quadrupedal locomotion [29].
In bipedal locomotion, gaits are normally directly interpreted
via individual periodic orbits. In our approach, we describe
the bipedal walking via the orbits of the center of mass
(COM) in the sagittal and coronal planes. Through the P1
and P2 orbits of the H-LIP, the combination of two types of
orbits in 3D can provide a metric of categorizing the periodic
orbits of bipedal locomotion.

Towards Gait Stabilization. The H-LIP stepping proves
equivalent stabilization on the aSLIP and the full Cassie
model. We are confident that this same approach can be
applied to other pogo-stick robots. Our hypothesis is that the
differences between these models are insignificant comparing
to the hybrid periodic nature of the walking. Additionally,
the height of the COM is preferred not to vary significantly
during walking. We think that the H-LIP stepping is also pos-
sible to function on other bipedal or quadrupedal locomotion
systems subject to mild modifications.

Towards Continuous Gait Synthesis. In the hybrid zero
dynamics (HZD) [6] approach for underactuated bipedal
walking, stable orbits are constructed discretely, which con-
sequently motivated the work of gait libraries [30]. In our
approach, all the individual walking orbits are viewed as con-
nected and can be continuously stabilized. All the walking of
the aSLIP and Cassie come from a single stepping-in-place
optimization of the aSLIP model. The stabilized walking
motion is generated via the H-LIP stepping by the selection
of the P1 or P2 orbits with the desired walking velocities.

4650



In the future, we will emphasize our effort on establish-
ing the theoretical guarantee on the stabilization from the
simplified conceptual model to the full dimensional robot
model, despite that this approach has been widely applied
and accepted. We also would like to extend the H-LIP
stepping to other types of walking robots.

APPENDIX
The continuous dynamics of the aSLIP are,

SSP :


r̈1 = F1

m − gcos(β1) + rβ̇2
1

β̈1 = 1
r1

(−2β̇1ṙ1 + gsin(β1))

s̈1 = L̈1 − r̈1
,

DSP :



r̈1 = F1+F2cos(q1−q2)
m − gcos(q1) + r1q̇

2
1

q̈1 = 1
r1

(−2q̇1ṙ1 + gsin(q1)− F2

m sin(q1 − q2))

r̈2 = F2+F1cos(q1−q2)
m − gcos(q2) + r2q̇

2
2

q̈2 = 1
r2

(−2q̇2ṙ2 + gsin(q2) + F1

m sin(q1 − q2))

s̈1 = L̈1 − r̈1
s̈2 = L̈2 − r̈2

,

where L̈1, L̈2 are assumed to be the inputs [15]. The spring
forces F1, F2 come from the leg spring approximation.

Impact Map Assumption: We assume there is an impact
event happening when the swing leg strikes the ground. Since
the leg is massless, the velocity on the mass is assumed
to be continuous. The velocity of the swing foot becomes
zero at touchdown. Let 2 index the swing leg. ṙ2 and q̇2
are discontinuous at impact. Additionally, the holonomic
constraint on the swing leg enforces L̇+

2 = ṡ+2 + ṙ+2 . It
is assumed that the leg length velocity is continuous, i.e.
L̇+
2 = L̇−2 . This matches with the intuition that, when the

leg is rigidly controlled, the impact instantaneously acts on
the compliant spring. The impact map is,

∆SSP→DSP :


q̇+2 = 1

r2
(q̇1ṙ1cos(q1 − q2) + ṙ1sin(q1 − q2))

ṙ+2 = ṙ1cos(q1 − q2)− q̇1r1sin(q1 − q2)

ṡ+2 = L̇−2 − ṙ
+
2

.

The transition map ∆DSP→SSP is smooth.
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