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3-D Underactuated Bipedal Walking via H-LIP Based
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Abstract—In this article, we holistically present a hybrid-linear
inverted pendulum (H-LIP) based approach for synthesizing and
stabilizing 3-D foot-underactuated bipedal walking, with an em-
phasis on thorough hardware realization. The H-LIP is proposed
to capture the essential components of the underactuated and
actuated part of the robotic walking. The robot walking gait is
then directly synthesized based on the H-LIP. We comprehensively
characterize the periodic orbits of the H-LIP and provably derive
the stepping stabilization via its step-to-step (S2S) dynamics, which
is then utilized to approximate the S2S dynamics of the horizontal
state of the center of mass of the robotic walking. The approxima-
tion facilities a H-LIP based stepping controller to provide desired
step sizes to stabilize the robotic walking. By realizing the desired
step sizes, the robot achieves dynamic and stable walking. The
approach is fully evaluated in both simulation and experiment on
the 3-D underactuated bipedal robot Cassie, which demonstrates
dynamic walking behaviors with both high versatility and robust-
ness.

Index Terms—Bipedal walking, foot-underactuation, hybrid-
linear inverted pendulum (LIP), step-to-step (S2S) dynamics,
stepping stabilization.

I. INTRODUCTION

B IPEDAL walking robots locomote in the world by actuat-
ing its internal joints [6], [7]. The foot–ground contact can

be underactuated when the foot contacts the ground partially
or the foot itself is not internally actuated due to the lack of
motors at the ankle joints in the robot design [6], [8] for agility
and simplicity. Both are defined as foot-underactuation, where
the ground can not fully and continuously react moments to the
robot. Moreover, the constant switching of support legs renders
the dynamics to be hybrid [7]: cycling between continuous
dynamics and discrete transitions. These conditions differ from
those of controlling a robot arm [9], where the base is fixed
and the dynamics are typically continuous and fully actuated.
Thus, generally speaking, it is challenging to control locomotion
behaviors on the high dimensional foot-underactuated bipedal
walking robots.

Manuscript received October 29, 2021; accepted January 24, 2022. This article
was recommended for publication by Associate Editor O. Stasse and Editor E.
Yoshida upon evaluation of the reviewers’ comments. This work was supported
by Amazon Fellowship in AI and NSF under Grants 1924526 and 1923239.
(Corresponding author: Xiaobin Xiong.)

The authors are with the Department of Mechanical and Civil Engineering,
California Institute of Technology, Pasadena, CA 91125 USA (e-mail: xiaobin-
isawesome@gmail.com; ames@caltech.edu).

This article has supplementary material provided by the au-
thors and color versions of one or more figures available at
https://doi.org/10.1109/TRO.2022.3150219.

Digital Object Identifier 10.1109/TRO.2022.3150219

Various approaches have been proposed to generate stable
foot-underactuated bipedal walking. The hybrid zero dynam-
ics (HZD) approach [7], [10], born in the control community,
plans attractive periodic orbits with virtual constraints in the
full-dimensional state-space of the robot via large-scale trajec-
tory/parameter optimizations [11] or numerical methods [12].
Feedback controllers [10], [13] are employed to enforce the
virtual constraints, and the stability of the generated walking is
typically determined by the analysis on the numerically derived
Poincaré map. Practical realizations, however, challenge the
theoretical soundness. The optimization is highly nonconvex
and difficult to solve in general. Furthermore, the stability of
optimized 3-D walking gaits cannot be easily determined in
the optimization. Last, even if the optimized gait is stable, the
walking on the robot can be unstable if the robot deviates from
the model that is used in the optimization.

Another widely studied approach uses the spring loaded in-
verted pendulum (SLIP) [6], [14] model for generating com-
pliant legged locomotion behaviors. The SLIP sparked wide
interests in the legged locomotion community, since it was found
to successfully capture both walking and running dynamics of
biological systems [15]. The controllers on the SLIP can be
derived either by intuition [6] or based on its return map [16].
Several bipedal robots [17]–[20] have been designed and built to
resemble the SLIP. For those types of robots, the SLIP-inspired
controllers are thus utilized to render the corresponding loco-
motion behaviors. However, the SLIP based approaches cannot
be easily used for non-SLIP like underactuated bipedal robots
in practice. Furthermore, transitions between periodic walking
behaviors on both the SLIP and the robot are not well studied.

In this article, we present a walking synthesis and control
based on a model simplification, which focuses on the switch of
support legs and neglects foot actuation. The simplified model
is a variant of the linear inverted pendulum (LIP) [21] with
passive pivot contact and a hybrid domain structure. Thus, we
name it the Hybrid-LIP (H-LIP) [1]. The H-LIP is passive in
the continuous domains of walking, and the “actuation” that
changes the walking behavior is on the step size. By formulating
the dynamics at the step-level, the step size becomes the input
to its step-to-step (S2S) dynamics.

The H-LIP approximates the hybrid walking of a
foot-underactuated bipedal robot assuming that the center
of mass (COM) is approximately constant and the swing
foot periodically lifts off and strikes the ground. Then, the
linear S2S dynamics of the H-LIP approximates the S2S
dynamics of the robot. By treating the model difference as a
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Fig. 1. H-LIP based approach on generating underactuated bipedal walking:
(left) the periodic orbits of the H-LIP and (right) 3-D robotic walking.

bounded disturbance to the linear S2S, state-feedback stepping
controllers (i.e., H-LIP stepping [1], [22]) can be synthesized to
control the horizontal COM state of the robot at the preimpact
event; the difference of the horizontal states between the robot
and the H-LIP converges to disturbance invariant sets.

To implement the H-LIP based approach on the 3-D robot, we
first realize desired walking behaviors on the H-LIP, by charac-
terizing its periodic orbits and synthesizing their stabilization.
The desired H-LIP walking is then used in the stepping controller
to find desired step sizes on the robot to realize desired walking
behaviors. We realize our approach on the 3-D underactuated
bipedal robot Cassie, shown in Fig. 1. The desired walking
trajectories are constructed based on the H-LIP and its stepping
controller and then stabilized via joint-level controllers. Versatile
and robust walking behaviors are thus realized on the robot in
both simulation and experiments.

A. Contributions

The main contributions of this article are as follows.
1) Holistically presenting the low-dimensional model (H-

LIP) with its comprehensive orbit characterizations and
stabilization for the purpose of approximating underactu-
ated bipedal walking dynamics. We examine the nature of
underactuated bipedal walking and then extend the under-
actuated canonical LIP to a hybrid version to approximate
the underactuated bipedal walking.

2) Designing a highly versatile gait synthesis with stepping
stabilization directly based on the H-LIP for realizing 3D
underactuated walking on robots with and without compli-
ance. We present a walking synthesis that directly maps
the features of the H-LIP walking to the robotic walk-
ing. All desired trajectories are designed in closed-form,
eliminating the need of solving any nonconvex trajectory
optimization problems.
The stepping stabilization is formally synthesized based
on the S2S dynamics approximation of the robot via the
H-LIP.

3) Providing a computationally-efficient and robust realiza-
tion on the physical hardware of the complex 3D underac-
tuated bipedal robot Cassie with passive compliance. We

present computationally efficient and rigorous implemen-
tations to solve the practical problems including contact
detection and COM velocity approximations, which are
shown to be highly robust to uncertainties of the hardware
system and external disturbances.

This article extends on our previous results in [1] and [22].
In [1], we presented the H-LIP, its orbit characterization, and
heuristically synthesized but provable stepping stabilization. We
applied the stepping controller on an actuated SLIP (aSLIP)
model and the underactuated bipedal robot Cassie in simulation.
Trajectory optimization on the aSLIP is needed to apply the
H-LIP based stepping on the aSLIP itself and Cassie. Xiong and
Ames[22] later extends the aSLIP in 3-D and embeds its dynam-
ics on fully actuated humanoid walking; [23] extends the aSLIP
walking on rough terrains via advanced control techniques.

Compared to our previous results, this article formally
presents the H-LIP based gait synthesis and stabilization on
foot-underactuated bipedal robots in a holistic and direct fash-
ion, with a very strong emphasis on the comprehensive hard-
ware realization and evaluation on a 3-D robot via principled
model-based techniques. Importantly, the gait synthesis is newly
designed to directly map the actuated states from the H-LIP
to the robot; constructed outputs are capable to address the
compliance in the robot, which can also be applied to the robot
without compliance. Versatile walking behaviors can be easily
realized in the new gait synthesis directly without solving any
trajectory optimization problems on the robot or the aSLIP. The
direct gait synthesis also improves the S2S approximation and
thus the robustness to external disturbances. Besides these, the
equivalent characterizations of the Period-1 and Period-2 orbits
are proved to complete the orbit identification. The stepping
controllers are rigorously derived, and different low-level QP
controllers are shown to work equivalently for output tracking.
The performance of the realized walking on the 3-D robot is
analyzed on the error S2S dynamics.

B. Related Work and Comparisons

The H-LIP is a variant of the canonical LIP model [24] with
foot-underactuation and hybrid dynamics. The LIP has been ex-
tensively applied in the zero moment point (ZMP) approach [25],
[26] for realizing humanoid walking. The LIP is continuously
actuated; the H-LIP is only discretely actuated by swapping
support legs. One can view the ZMP-LIP approaches as using
the ZMP of the LIP to approximate the ZMP of the robot with
the LIP dynamics directly embedded on the humanoid. Instead,
we use the H-LIP dynamics to approximate the horizontal COM
dynamics of foot-underactuated bipedal robots, which can not
strictly embed the pendulum dynamics. Additionally, compared
to the LIP with foot-placement controllers [26]–[28] on hu-
manoid walking, this approach focuses on the periodic walking
and S2S stabilization on foot-underactuated bipedal robots.

Compared to the periodic walking realized via HZD [7], [29],
[30], the periodic orbits of the H-LIP are directly controlled via
the step size on the S2S dynamics. Thus, the stability of the
orbits and their transitions are solely determined by the stepping
controller. Additionally, the robot is not necessarily controlled
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to evolve on a strict orbit in its state-space. Instead, it converges
closely to the walking behavior of the H-LIP. The H-LIP walking
is predetermined but the walking of the robot is not.

The notation of the S2S dynamics in legged locomotion is
an adaptation of the Poincaré return map in nonlinear dynam-
ics [31]. The S2S has mostly appeared in controlling SLIP
running [32], [33]. By investigating the evolution of the apex
states, the S2S/return map of running can be easily obtained on
the SLIP. Feedback controllers thus can be synthesized based on
the S2S to stabilize the running of the SLIP. However, the S2S
of the walking of the SLIP has not been shown to be obtained
easily, possibly due to the complexity of the inclusion of the DSP
dynamics. Similarly, the S2S of a 3-D bipedal walking robot
cannot be obtained easily. By and large, the control based on the
return map of walking has been focused on the linearization at the
fixpoint [34]–[37] of a periodic solution on the return map (very
few exceptions [32], [38] learned the S2S); heuristically tuned
foot-placement controllers [6], [19] implicitly exploit the S2S
dynamics for stabilization around local behaviors. This article,
instead, approximates the robot S2S dynamics over a large
region in the state-space at the Poincaré section. Additionally,
the S2S approximation is linear and readily facilitates periodic
walking to be completely characterized and feedback controllers
to be rigorously designed, which yields versatile and robust gait
synthesis.

II. PRELIMINARY

A. Hybrid Dynamics Model of Bipedal Walking

The dynamics of bipedal walking can be described as a hybrid
dynamical system [7] with continuous dynamics in different
domains and in-between discrete transitions. The continuous
dynamics are affine control systems

ẋ = fv(x) + gv(x)τ (1)

where x is the system state, τ is the vector of input torques,
and the subscript v is the domain index. The discrete transitions
between the consecutive domains can be described by

x+ = Δv→v+1(x
−) (2)

where the superscripts − and + stand for the instants before and
after the transition, respectively.

Since there is no flight phase, the hybrid walking dynamics are
composed either of a single domain: single support phase (SSP)
or by two domains: a SSP and a double support phase (DSP). We
refer to the two as one-domain walking and two-domain walking
(see Fig. 2). For one-domain walking, the transitionΔSSP−→SSP+

happens at the impact when the swing foot strikes the ground.
The impact is modeled as plastic impact [7], where the velocity
of the swing foot becomes zero after the impact, and thus the state
undergoes a discrete jump. As for the two-domain walking, the
transition ΔSSP→DSP is also the impact event, and the transition
ΔDSP→SSP is when one of the stance feet lifts off from the ground.
The existence of the DSP happens when there is compliance in
the leg that prevents the stance leg from instantaneously lifting
off at the impact. The one-domain walking can be viewed as

Fig. 2. Hybrid graphs of one-domain walking and two-domain walking.

Fig. 3. Actuated and underactuated states of bipedal walking with the illus-
tration by an inverted pendulum in the SSP.

a two-domain walking with an instantaneous DSP. The two-
domain walking is then chosen as the general model that we
study for walking.

B. Actuated and Underactuated States

The foot-underactuation prevents the direct continuous con-
trol on the horizontal COM state of the robot to desired trajecto-
ries in the SSP. A simple illustration is that an inverted pendulum
would roll passively without any actuation at the contact with
the ground (see Fig. 3). Like the robot, if we assume there is an
actuation on the pendulum length, the vertical COM height of
the pendulum z can be chosen as the actuated state, while the
horizontal COM position p becomes the underactuated state.
Theoretically speaking, the robot has rotational linkages, which
can change its centroidal angular momentum and thus indirectly
affect the horizontal COM [27], [39], [40], e.g., the angle of a
flywheel-inverted pendulum can be controlled via the continuous
rotation of the flywheel [41]. However, the joints on robots
typically have limited ranges of motion, control bandwidth, and
torques in practice; the robot also needs to move the swing leg in
a certain fashion to maintain walking. Thus, it is not possible to
purely depend on the angular momentum to continuously control
the COM. Therefore, the horizontal COM state of the underac-
tuated robot is approximately equivalent to the underactuated
(“weakly actuated” [42]) states in practice, which we can not
continuously control to follow random continuous trajectories.
The rest degrees of freedom, e.g., the vertical COM height and
the swing foot position, are the actuated states that we can
directly control to follow reasonable trajectories. The way of
stabilizing the underactuated state is revealed in the next section
by approximating the hybrid underactuated dynamics via the
H-LIP.
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Fig. 4. Walking of the Hybrid-LIP model in SSP (a), at the preimpact state
(b), and during DSP (c).

III. H-LIP MODEL

A. Walking Dynamics of the H-LIP

1) Hybrid Dynamics: The H-LIP is a point-mass model with
a constant COM height and two telescopic legs with point-feet
(see Fig. 4). The point-feet correspond to the underactuated feet
of bipedal robots. Based on the number of contacts with the
ground, the walking is composed by a SSP and a DSP. In the
SSP, the model is a passive LIP with no actuation; in the DSP,
we assume that the mass velocity is constant. The state of the
system is composed of the position p and the velocity v of the
mass. p is defined as the position of the mass relative to its stance
foot. In the DSP, the stance foot is the previous stance foot in
the SSP. Thus, the dynamics are

p̈ = λ2p (SSP)

p̈ = 0 (DSP)

where λ =
√

g
z0

and z0 is the height of the H-LIP. We assume

that the domain durations (TSSP and TDSP) are constant. Since
the H-LIP is a point-mass model, the swing foot behavior of lift-
off and touch-down is not explicitly described. The transitions
between domains are assumed to be smooth

ΔSSP→DSP :

{
v+ = v−

p+ = p− ΔDSP→SSP :

{
v+ = v−

p+ = p− − u

where u is the step size, and the +/− indicate the states after
and before the transition, respectively. Since the dynamics are
linear and the transitions are in closed-form, the solutions are

SSP :

{
p(t) = c1e

λt + c2e
−λt

v(t) = λ(c1e
λt − c2e

−λt)
(3)

DSP :

{
p(t) = p−SSP + v−SSPt
v(t) = v−SSP

(4)

where c1 = 1
2 (p

+
SSP +

1
λ
v+SSP) and c2 = 1

2 (p
+
SSP − 1

λ
v+SSP).

3D H-LIP: The H-LIP is a planar model. Similar to LIP, the
H-LIP can be presented in the 3-D space. Since its dynamics are
completely decoupled in each plane, a H-LIP in 3-D is equivalent
to two orthogonally coupled planar H-LIPs.

Equivalence to a One-Domain System: The hybrid dynamics
of the H-LIP with two domains can be equivalently simplified
to a single-domain hybrid system. This will simplify the de-
scriptions of periodic orbits. Since the closed-form solution of
the DSP is known, we virtually treat the DSP and its associated
transitions as a single transition from the final state of the SSP

to the initial state of the next SSP. Thus, the transition is defined
as

ΔSSP−→SSP+ :

{
v+ = v−

p+ = p− + v−TDSP − u
. (5)

As a result, we have a hybrid dynamical system with a
continuous SSP dynamics and a virtual discrete transition. When
TDSP = 0, the dynamics becomes an actual one-domain system
with only SSPs, which is the passive LIP (LIP with point foot)
in the literature [43]–[46].

Actuated and Underactuated States: The assumptions on the
H-LIP are designed to approximate the hybrid dynamics on
the foot-underactuated bipedal robot. We include the DSP in
the model to make it general to represent both one-domain
walking and two-domain walking on the robot. The actuated
states of the H-LIP are implicitly defined on the vertical COM
height and the swing foot positions, which match the actuated
states of the robot. The assumption of the constant COM height
is to simplify the dynamics, which will be enforced on the
robot. The swing foot position changes the step size u at a
fixed stepping frequency. The contact is unactuated to match
the foot-underactuation. The horizontal COM states [p, v]T of
the H-LIP are passive in both domains of walking; however,
they are underactuated by the swing foot trajectories via u in the
hybrid dynamics, the closed-form relation of which is revealed
in the following S2S dynamics.

2) S2S Dynamics: The dynamics of the H-LIP are piecewise
linear. As the durations are constant, the preimpact states at
consecutive steps can be related in closed-form. The state-space
representation of the SSP dynamics is

d

dt

[
p

v

]
︸ ︷︷ ︸

ẋSSP

=

[
0 1

λ2 0

]
︸ ︷︷ ︸

ASSP

[
p

v

]
︸︷︷︸
xSSP

. (6)

Thus, the final state of the SSP is calculated from the initial
state of the SSP

x−
SSPH-LIP

= eASSPTSSPx+
SSPH-LIP

. (7)

The transition in (5) can be written as

x+
SSPk+1 =

[
1 TDSP

0 1

]
x−

SSPk +

[
−1

0

]
uk (8)

where k is the step index. Plugging (8) into (7) yields

x−
SSPk+1 = eASSPTSSP

[
1 TDSP

0 1

]
︸ ︷︷ ︸

A

x−
SSPk + eASSPTSSP

[
−1

0

]
︸ ︷︷ ︸

B

uk.

From now on, we treat the final state of the SSP as the discrete
state of the hybrid dynamics of the H-LIP. Thus, we drop some
subscripts and superscripts and rewrite the above equation as

xH-LIP
k+1 = AxH-LIP

k +BuH-LIP
k (9)

which is referred to as the S2S dynamics of the H-LIP. The
S2S is a discrete linear time-invariant system with the step size
being the input, which concisely shows the underactuated state
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Fig. 5. Illustration of the H-LIP based gait synthesis on the actuated states and the stepping stabilization on the underactuated states of the robot.

is actuated at the discrete step-level by the actuated state under
the hybrid walking dynamics.

B. H-LIP Based Direct Gait Synthesis

The S2S dynamics of the H-LIP will be used for approximat-
ing the underactuated hybrid walking dynamics of the bipedal
robot. In order to facilitate the approximation, we need to enforce
the actuated states of the robot to behave similarly to the actuated
states of the H-LIP (see Fig. 5), including the vertical COM and
swing foot trajectories:

Vertical COM Height: The vertical height of the COM zCOM

should remain constant during walking. Strictly enforcing zCOM

to be constant yields the robot underactuated dynamics [44],
[47], [48] to be tightly approximately by the H-LIP dynamics in
the SSP. For underactuated robots with passive compliance in the
leg (e.g., Cassie), strictly enforcing this condition is challenging;
hence, we only make sure that zCOM is approximately constant
on the robot.

Vertical Swing Foot Trajectory: The second component is on
the synthesis of the vertical trajectory of the swing foot zsw.
As the step frequency on the H-LIP is assumed to be constant,
the swing foot on the robot is expected to periodically lift off
and strike the ground with the same frequency. This creates
continuing hybrid execution on the dynamical system and makes
sure that the S2S dynamics of the robot exists. As a result,
zsw should evolve on a time-based trajectory, which creates the
lift-off and touch-down behaviors based on time.

Horizontal Swing Foot Trajectory: As the step size is the
control input on the H-LIP, the horizontal trajectory of the swing
foot should be constructed to achieve a certain desired step size
on the robot. Since the impact is time-based, the horizontal
trajectory of the swing foot is constructed to swing to the desired
step location at the time of impact.

3D Walking Decomposition: The application to 3-D robotic
walking requires an orthogonal composition of two planar H-
LIPs. The two H-LIPs are synchronized with the same domain
durations and vertical COM height. We select the sagittal plane
and coronal plane of the robot as the decomposition of the robotic
walking. The horizontal COM state, swing foot position, and the
step size of the robot are decoupled into those in the sagittal and
coronal plane, respectively.

C. Stepping Stabilization Via S2S Dynamics Approximation

As we use the S2S dynamics of the H-LIP to approximate
the S2S dynamics of the robot, we can synthesize the desired
step sizes via the S2S dynamics approximation for stabilizing
the underactuated horizontal COM state of the robot to realize
the desired walking. The stepping in the sagittal plane is used as
an example; it is applied identically to the coronal plane.

As the robot is controlled to periodically lift off and touch
down the foot, the hybrid dynamics of walking repeats a walking
cycle. In other words, the preimpact state exists, despite the
number of domains in the hybrid walking. Let {q−, q̇−} be
the preimpact state of the robot. The step-level evolution of the
preimpact states, i.e., the S2S dynamics of the robot, can be
represented by

{q−k+1, q̇
−
k+1} = P(q−k , q̇

−
k , τ(t)) (10)

where k is the index of the step, and τ(t) represents the torques,
which are applied during the step k. Each step starts with a
DSP (if exists) and a following SSP. Let xR = [pR, vR]T be
the horizontal COM state at the preimpact event. pR, vR are the
horizontal position and velocity of the COM of the robot, which
are functions of the preimpact state {q−, q̇−}. Thus, xR

k+1 =

[pRk+1(q
−
k+1, q̇

−
k+1), v

R
k+1(q

−
k+1, q̇

−
k+1)]

T . Plugging (10) in this
yields the S2S dynamics of the horizontal COM state xR

k+1,
which can be compactly represented by

xR
k+1 = Px(q

−
k , q̇

−
k , τ(t)). (11)

In the latter, we directly refer (11) as the S2S of the robot.
Due to the nonlinear dynamics of the robot, the exact expres-

sion of the S2S dynamics can not be computed in closed-form.
Thus, synthesizing the controller directly based on the S2S
dynamics is difficult in general. Since we design the gait of the
robot based on the H-LIP, the S2S of the robot should be close
to the S2S of the H-LIP. Therefore, we use (9) to approximate
(11), which can be rewritten as

xR
k+1 = AxR

k +BuR
k + wk (12)

wk : = Px(q
−
k , q̇

−
k , τ(t))−AxR

k −BuR
k . (13)

where uR
k is the step size of the robot, and w is the difference of

the S2S dynamics between the robot and the H-LIP. w is also the
integration of the difference of the continuous dynamics over one
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step between the two systems. As the gait of the robot is designed
to match the walking of the H-LIP, the dynamics error should
be small. Given a step frequency, each step happens in a finite
time (determined by the vertical trajectory of the swing foot).
Therefore, w, the integration of the continuous error dynamics
over a finite time, is assumed to belong to a bounded set, i.e.,
w ∈ W . w is treated as the disturbance to the linear system.
Thus, on the robot, we apply the H-LIP based stepping

uR = uH-LIP
k +K(xR

k − xH-LIP
k ) (14)

where uH-LIP
k is the step size on the H-LIP to realize desired

walking behaviors, and K ∈ R2 is the feedback gain to make
A+BK stable (eig(A+BK) < 1). Let e = xR − xH-LIP be
the error state. Applying (14) in (12) yields the error S2S
dynamics

ek+1 = (A+BK)ek + wk. (15)

Since A+BK is stable, the error dynamics has a minimum
disturbance invariant set E. By definition

(A+BK)E ⊕W ∈ E. (16)

where ⊕ is the Minkowski sum. We call E the error invariant
set, i.e., if ek ∈ E then ek+1 ∈ E. If W is small, then E is
small. Since the robot kinematics is bounded by its joint limits,
its COM position and step sizes are bounded in finite-sized
sets (uR ∈ U and pR ∈ Xp) with a prespecified zCOM. Given a
fixed step frequency, the realizable horizontal velocity vR is also
bounded; thus xR ∈ X . The desired behavior of the H-LIP then
should satisfy uH-LIP ∈ U �KE and xH-LIP ∈ X � E. Thus,
the desired walking behavior (of the horizontal COM state) can
be first realized on the H-LIP, and then applying the H-LIP based
stepping yields the behavior to be approximately realized on the
robot, with the error being bounded byE. In the next section, we
present the identification and realization of the desired periodic
walking on the H-LIP in terms of xH-LIP

k and uH-LIP
k that will be

used in (14) for generating the desired step sizes on the robot
for walking realization.

IV. ORBIT CHARACTERIZATION, COMPOSITION, AND

STABILIZATION ON THE H-LIP

We will briefly present the resulting theorems of the orbit
characterization and leave the proofs in the Appendix. The
superscripts H-LIP are omitted in this section for conciseness.

A. Orbit Characterization

The periodic orbits of the H-LIP that encode walking can be
geometrically characterized in its state space. We categorize the
orbits of interest into two types, Period-1 (P1) and Period-2 (P2)
orbits, depending on the number of steps that the orbit contains.
P1 orbits have a period of one step, and P2 orbits have a period
of two steps. There are also PN (N > 2) orbits, and we do not
investigate them in this article.

The H-LIP is a 2-D system, thus we can present the periodic
orbits explicitly in its state space with its phase portraits. For
the H-LIP in SSP, its phase portraits are identical to that of
the canonical passive LIP [see Fig. 6(a)]. It is divided into

Fig. 6. Phase portraits of the H-LIP walking in its (a) SSP and (b) DSP.

four regions by the cross lines v = ±λp, based on the orbital
energy [24]: Eo(p, v) = v2 − λ2p2. The physical meaning of
Eo > 0 is that the H-LIP rotates over the stance foot, i.e., the
system passes through the states, where p = 0. In DSP, the phase
portrait is simple, shown in Fig. 6(b).

For conciseness, we use the equivalent one-domain system in
Section III-A of the H-LIP. Then the orbits can be represented
only by a continuous SSP trajectory and a discrete transition. In
the following, we present the geometric characterization of P1
and P2 orbits in the phase portrait of the SSP. The subscripts of
SSP on the states are omitted. Additionally, the preimpact states
and the step sizes of the orbits are presented explicitly from the
desired walking velocity.

1) Period-1 Orbits: We start with the geometric characteri-
zation of the P1 orbits. The velocity is the same between the start
and the end of the SSP of the P1 orbits, i.e., v+SSP = v−SSP. Since
the phase portrait is left-right symmetric, the orbits are left-right
symmetric as well. By inspection, all P1 orbits should only exist
in the Eo > 0 regions and pass the vertical line of p = 0. The
comprehensive characterization is stated as follows:

Theorem 1: The initial and final states of the P1 orbits in
SSP are on the orbital lines v = ±σ1p, with

σ1 := λcoth

(
TSSP

2
λ

)
, (17)

being the orbital slope. Each state on v = σ1p represents the
final state of the SSP of a unique P1 orbit with the step size:

u1 = 2p− + TDSPv
−. (18)

Here, we defined the orbital lines and orbital slopes to locate
the boundary states of the orbits. Additionally, given a desired
net velocity vd, there is a unique P1 orbit for realization. It is
obvious that the step size of the P1 orbit is

u∗ = vd(TDSP + TSSP) := vdT (19)

with T being the entire step duration. Then the final states of
SSP of the P1 orbit are calculated from (17) and (18)

[p∗, v∗] = [1, σ1]
vdT

2 + TDSPσ1
. (20)

Fig. 7 shows three P1 orbits in the phase portrait of the SSP to
illustrate the characterization of the P1 orbits with TSSP = 0.5s.
A differentTSSP would produce a different set of orbital lines (the
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Fig. 7. Period-1 orbits illustrated in the phase portrait. The yellow cross lines
are the orbital lines of P1 orbits. The red, blue, and gray lines are walking orbits
with v− = 1, 0.5,−0.7m/s. The dashed lines indicate the transitions in (5). The
right-side subfigures illustrate the walking of each orbit.

cross yellow lines). As TSSP → ∞, the orbital lines converges
to the black lines.

2) Period-2 Orbits: P2 orbits take two steps to complete a
periodic walking. We differentiate the consecutive two steps
by its stance foot, indexed by L/R. Similar to the P1 orbits,
we identify the orbital slope and orbital lines of P2 orbits, and
therefore the P2 orbits are geometrically characterized:

Theorem 2: For P2 orbits, the initial and final states of SSP
are located on the orbital lines defined as v = ±σ2p+ d2
with d2 being a constant and the orbital slope:

σ2 := λtanh

(
TSSP

2
λ

)
. (21)

Each state on the line v = σ2p+ d2 represents the final state
of the SSP of a P2 orbit with the step size being:

uL/R = 2p−L/R + TDSPv
−
L/R. (22)

Geometrically, d2 shifts the set of orbital lines up or down.
The magnitude of d2 determines the net velocity of the P2 orbit.
Given the desired velocity vd, d2 can be calculated

d2 =
λ2sech2( λ

2TSSP)Tv
d

λ2TDSP + 2σ2
(23)

which does not depend on the selection of the boundary states.
This indicates that there is an infinite number of P2 orbits to
realize one desired net velocity. Another way to look at this
is through the fact that the step sizes are determined by vd:
u∗

L + u∗
R = 2vdT. There are infinite combinations of u∗

L, u
∗
R to

satisfy this, and therefore there are infinite P2 orbits to realize
the desired velocity. Selecting one step size (e.g., u∗

L) determines
the other one and thus determines the P2 orbit. The final states
of the SSP can then be determined from (22)

p∗L/R =
u∗

L/R − TDSPd2
2 + TDSPσ2

, v∗L/R = σ2p
∗
L/R + d2. (24)

Fig. 8 illustrates three P2 orbits. The blue and the gray orbits
are located on the same set of orbital lines (yellow lines with
d2 = 0), thus they have a zero net velocity. The red P2 orbit has
a nonzero net velocity.

Fig. 8. Period-2 orbits illustrated in the phase portrait. The yellow cross lines
and the orange cross lines are the orbital lines of P2 orbits. The blue and gray
orbits are the P2 orbits with net velocity being 0. The net velocity of the red
orbit is 0.25 m/s.

Fig. 9. Equivalent characterization of the periodic orbits. The dashed cross
lines are the equivalent orbital lines.

3) Equivalent Characterization: The P1 and P2 orbits are
characterized by their orbital lines, respectively. We find that
under certain conditions, the orbital lines of P1 orbits can also
characterize P2 orbits and vice versa. When uL = uR, a P2 orbit
becomes an equivalent P1 orbit, which is stated as

Proposition 2: The orbital lines v = ±σ2p+ d2 charac-
terize the P1 orbits when uL = uR, which yields the final
state of the SSP as p∗ = d2sinh(TSSPλ)

2λ
, v∗ = σ2p

∗ + d2.

Similarly, P1 orbital lines can characterize P2 orbits

Proposition 3: The extended P1 orbital lines v =
±σ1(p± d1) characterize the P2 orbits: the initial states
are on v = −σ1(p± d1) and the final states are on v =
σ1(p± d1). The corresponding step sizes are as stated in
(22).

The nonuniqueness of P2 orbits to realize the desired velocity
comes from the nonuniqueness of d1. Given a d1, the final states
of the P2 orbits can thus be determined. Fig. 9 illustrates the
equivalent characterizations of the orbits in Figs. 7 and 8. In the
latter, we only use the results from Theorems 1 and 2 to find the
desired walking orbits.

4) 3-D Composition: Full 3-D walking can be encoded by
two orthogonally composed planar orbits. The desired 3-D walk-
ing behavior is first described via the desired walking velocities
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vdx,y in the sagittal and coronal plane. The orbit that realizes
the walking velocity is then identified in each plane. A typical
composition is choosing a P1 orbit in the sagittal plane and a
P2 orbit in the coronal plane (sP1-cP2). The nonuniqueness of
the P2 orbit can prevent foot collisions by selecting step sizes
to have opposite signs. This will be the main composition we
realize on the 3-D robot.

B. Orbit Stabilization

We now derive the stepping stabilization on the periodic
orbits. It can be viewed as generating a controller on u such
that the S2S state is controlled to the desired final states in (20)
for P1 orbits and in (24) for P2 orbits. In [1], the stabilization
was formulated based on the hybrid dynamics, and the proof
was on the contraction on the distance between the state and
the target state of the orbit. Hence, the ranges of the gain and
the optimal gains in terms of contraction rate were derived from
the contraction. One can also derive the stabilization via the
S2S dynamics. It becomes a canonical linear control problem:
controlling the state to the desired one based on the linear
dynamics. We do not present this approach here. Instead, we
directly apply the H-LIP based stepping in (14) to stabilize the
orbits of the H-LIP, which yields the simplest derivation. The
stepping stabilization for P1 orbits is

u = u∗ +K(x− x∗) (25)

where x = [p−, v−]T is the current preimpact state of the H-LIP,
u∗ is the step size of the desired P1 orbit, and x∗ = [p∗, v∗]T is
the preimpact state of the desired P1 orbit. The error state is
e = x− x∗, and the error S2S dynamics becomes

ek+1 = (A+BK)ek. (26)

This is (15) with w = 0 since the H-LIP stepping is applied
on the H-LIP itself. To drive the H-LIP to its orbit, i.e., e → 0,
we only need to find K to make A+BK stable. The deadbeat
control can be applied. Since the system has two states and one
input and it is controllable (its controllability matrix is of full
rank), it requires to two steps to make e → 0 for all e ∈ R2.
The deadbeat gain is calculated from: (A+BKdeadbeat)

2 = 0,
which yields

Kdeadbeat =
[
1 TDSP +

1
λ

coth(TSSPλ)
]
. (27)

Plugging the deadbeat gain into (25) yields

uk = p+ p∗ + TDSPv +
1
λ

coth(TSSPλ)(v − v∗). (28)

This is verified to be equal to the optimal stepping controller in
[1, Th. 2.1], which globally stabilizes the system to the desired
P1 orbit with two steps. Similarly, the stepping stabilization for
P2 orbits is

uL = u∗
L +K(xL − x∗

L), uR = u∗
R +K(xR − x∗

R) (29)

which yields the same error dynamics in (26). When the deadbeat
gain in (27) is chosen, the controller becomes identical to the
optimal controller in [1, Th. 2.2].

This application of the “H-LIP stepping” on the H-LIP should
not be confused to that on the robot. On the robot, we initialize

Fig. 10. Underactuated bipedal robot Cassie, its joints, and linkages.

the H-LIP state to be identical to the robot, stabilize the H-LIP
to the desired behavior using (29), and then stabilize the robot
to the walking of the H-LIP using (14).

Comparison to Capture Point: The deadbeat stepping con-
troller on the H-LIP is similar to the capture point controller [27].
In the capture point controller, the step location is determined by
the passive LIP so that the robot can come to a stop, i.e., v → 0
as t → ∞. In comparison, the H-LIP with zero velocity is a P1
orbit with v∗ = 0. Additionally, if we assume TSSP → ∞ and
TDSP → 0, (28) becomes identical to the instantaneous capture
point controller

u = p+���
0

p∗ +����
0

TDSPv +
1
λ������� 1

coth(TSSPλ)(v −��	
0

v∗) = p+
v

λ
.

Thus, the capture point controller on the H-LIP is a special
case of the deadbeat stepping controller on this model. More
importantly, the capture point controller based on the LIP is
typically directly applied on the robot; whereas the stepping
controller on the H-LIP, e.g., in (28), is not directly applied on
the robot but is used at the nominal step size uH-LIP in (14).

Remark 1: The S2S formulation of H-LIP stepping for its
orbit stabilization also enables the use of many linear con-
trollers. For instance, the linear quadratic regulator (LQR) con-
troller [22], [49] can be applied to provide the optimal gain
K subject to a quadratic cost on the states and inputs. Model
predictive controllers (MPC) [50] can be easily synthesized on
the linear S2S dynamics to directly stabilize the state to the
desired one on the periodic orbits. In this article, we do not
present those results or their comparisons. Instead, we directly
realize the deadbeat controller on the H-LIP and then on the
robot Cassie to evaluate the H-LIP based approach.

V. APPLICATION TO BIPEDAL ROBOT CASSIE

A. Robot Model

The robot Cassie (see Fig. 10) is a 3-D underactuated bipedal
robot with compliance. It is designed and built by agility robotics
to resemble the SLIP model [8], [15] for locomotion; the com-
pany provided the kinematics and inertia of each linkage of
the robot, which are used in the articulated rigid-body model
in our study. Roughly speaking, the robot has a concentrated
upper body and light-weight springy legs. Here, we describe the
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mathematical model that best captures its dynamics with certain
simplifications.

Each leg on the robot can be modeled with seven degrees of
freedom, including five motor joints and two leaf springs. The
two leaf springs can be modeled as two rotational joints with
torsional springs [20]. As shown in Fig. 10, the four-bar linkage
on the lower part of the leg transmits a distant motor actuation to
the pitch of the foot. The closed-loop linkage on the upper part of
the leg can be viewed as to translate the rotation of the knee joint
to the tarsus joint, which extends and retracts the foot. Since the
push-rods are light-weighted, we neglect their inertia and their
associated degrees of freedom (dofs) for simplifications. The
foot is then assumed to be directly actuated from the toe motor.
The Achilles rod is replaced by a holonomic constraint on the
distance between the end-points of the rod.

We use the floating-base coordinate to describe the con-
figuration of the robot: q = [qpelvis, q

L
leg, q

R
leg]

T , where qpelvis =

[qx,y,zpelvis , q
rpy
pelvis] ∈ SE(3) is the pelvis configuration, and qL

leg, q
R
leg

are the configuration of the left and right leg, respectively.
qL/R

leg = [qroll
hip , q

yaw
hip , qpitch

hip , qknee, qshin, qtarsus, qheel, qtoe], where the
individual element is the joint angle. The motor joints are
qmotor = [qroll

hip , q
yaw
hip , qpitch

hip , qknee, qtoe]
T , and the spring joints are

qspring = [qshin, qheel]
T . The continuous dynamics are

M(q)q̈ + C(q, q̇) +G(q) = Bτm + JT
s τs + JT

h Fh (30)

Jhq̈ + J̇hq̇ = 0 (31)

where M(q) is the mass matrix, C(q, q̇) contains the Coriolis,
and centrifugal forces, G(q) is the gravitational vector, τm rep-
resents the motor torque vector, τs is the vector of the torsional
forces of the spring joints, Js is the Jacobian of the spring joints,
B is the actuation matrix, Jh = [JT

rod, J
T
Foot]

T represents the
Jacobian of the holonomic constraints, and Fh = [FT

rod, F
T
GRF]

T

contains the holonomic forces, including the forces on the push-
rods and ground reaction forces (GRF). The spring forces are
calculated by: τshin/heel = Ks

shin/heel qshin/heel + Ds
shin/heel q̇shin/heel,

where Ks
shin/heel and Ds

shin/heel are the stiffness and damping of the
springs. The holonomic constraints h(q) include the distance
constraints on the Achilles push-rods and the ground contact
constraints. In the SSP, the ground contact can be described via
five holonomic constraints, and the dimension of h(q) is 7. In
DSP, the dimension of h(q) becomes 12. Note that, (30) and
(31) provide an affine mapping from the input torques to the
holonomic forces

Fh = Ahτm + bh. (32)

The exact expressions of Ah, bh are omitted here.
Hybrid Walking Model: The walking of Cassie is modeled as

a two-domain hybrid system. Due to the compliance in the legs,
the transition from the current SSP to the next SSP is not likely
to instantaneously happen right after the impact event. In other
words, the DSP typically exists in walking; hypothetically if
there is no compliance considered, the walking can be modeled
as a one-domain hybrid system with a trivial DSP. The impact
between the swing foot and the ground is assumed to be plas-
tic [7]. Note that the foot is small and its rotation is not actuated
in the lateral direction. Thus, the walking in the coronal plane

Fig. 11. Illustrations of the definition and desired trajectories of the output.

is underactuated at the foot. The toe actuation on the stance
foot is virtually removed by setting the torque to 0 to render
foot-underactuation in the sagittal plane as well.

B. H-LIP Based Direct Gait Design and Stepping on Cassie

Now, we apply the H-LIP based approach on Cassie. The out-
put is designed to satisfy the requirement of the H-LIP based gait
synthesis: the vertical COM position zCOM (w.r.t. the stance foot)
should be (approximately) constant, and the vertical position of
the swing foot zsw is constructed to periodically lift-off and strike
the ground. The horizontal position of the swing foot {x, y}sw

(w.r.t. the stance foot) is controlled to achieve the desired step
size ud

x,y from the H-LIP based stepping. Additionally, the
orientation of the pelvis qrpypelvis and the swing foot φsw

py should
be controlled to fully constrain the walking. The output in SSP
(illustrated in Fig. 11) is then defined as

Y =

⎡
⎢⎢⎢⎣

zCOM

{x, y, z}sw

qrpypelvis

φsw
py

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

zdCOM

{x, y, z}dsw

qrpy
d

pelvis

φsw
py

d

⎤
⎥⎥⎥⎦ . (33)

1) Accommodations for Compliance: The output definition
in (33) is sufficient for robots without evident compliant el-
ements. However, the passive compliance on Cassie creates
challenges on precise control on the vertical COM and swing
foot positions. If the output contains the compliant degrees of
freedom, the spring can create undesired resonance, which then
destabilizes the output, especially in the vertical direction. Thus,
accommodations have to be made for the compliance.

In [1], the uncompressed leg length (i.e., the leg length with
zero spring deflections) was used as the output to indirectly
control the vertical position of the COM and the swing foot.
Here, we select the uncompressed vertical COM and swing foot
positions as the approximation to the actual ones. By definition,
the vertical position of the COM w.r.t. the stance foot is a
function of {qrpypelvis, qmotor, qtarsus, qspring}. The COM height with
uncompressed springs is

z̃COM = zCOM(qrpypelvis, qmotor, qtarsus → qrigid
tarsus, qspring → 0).
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qrigid
tarsus is the uncompressed tarsus angle under the holonomic

constraint of the push-rod

qrigid
tarsus = Root(hrod(qknee, qshin → 0, qheel → 0, qtarsus) = 0)

which is solved via Newton–Raphson method. zCOM in (33) is
thus approximated by z̃COM. Similarly, the position of the swing
foot w.r.t. the stance foot are approximated in the same way by
{x̃, ỹ, z̃}sw. Since the springs on the stance leg are expected to
oscillate less, we only set the springs on the swing legs to 0 in
{x̃, ỹ, z̃}sw for better approximations.

2) Desired Output Trajectories: The desired orientations of
the pelvis and swing foot are chosen to be constant. The rest of
the desired trajectories are designed with Bézier polynomials to
satisfy the requirements of the H-LIP based approach. The exact
Bézier coefficients are listed in the Appendix.

First, the desired step sizes in the sagittal and coronal plane
are constantly decided from the H-LIP based stepping in (14)

ud
x/y = uH-LIP

x/y +K(x/yR − x/yH-LIP) (34)

where x/yR is the horizontal COM state of the robot in the
sagittal or coronal plane. The desired horizontal trajectories of
the swing foot are designed as

x/ydsw = (1− bh(t))x/y
+
sw + bh(t)u

d
x/y (35)

where x/y+sw is the horizontal position of the swing foot w.r.t.
the stance foot in the beginning of the current SSP. bh(t) is a
Bézier polynomial that transits from 0 (t = 0) to 1 (t = TSSP),
where the clock of the gait t is reset to 0 after each step.

The vertical COM position should be controlled to z0, which
is also the constant height of the H-LIP. At swapping support
legs, z̃COM has a small discrete jump. The desired trajectory of
the vertical COM position is then constructed as

zdCOM = (1− bh(t))z̃
+
COM + bh(t)z0 (36)

where z̃+COM is the uncompressed COM height in the beginning
of the SSP. Last, the vertical position of the swing foot zdsw(t) is
constructed as

zdsw(t) = bv(t, z
max
sw , zneg

sw ) (37)

where bv is another Bézier polynomial to create lift-off and
touch-down behaviors. It is designed to transit from 0 (t = 0) to
zmax

sw (e.g., t = TSSP
2 ) and back to zneg

sw (t = T ). zmax
sw is a constant

to determine the foot–ground clearance, and zneg
sw is a small

negative value to ensure foot-strike at the end. Note that the
same desired output trajectories can be directly applied to robots
without compliance.

3) Desired DSP Output: In DSP, two feet contact the ground
at all times. With more holonomic constraints on the system, the
dimension of the outputs decreases. Instead of reformulating a
different set of DSP outputs, we directly use the SSP outputs and
set the desired values of the outputs on the swing foot to be the
actual ones (including the horizontal positions and orientation),
which preserves the holonomic constraints in the DSP and also
simplifies the gait design.

Versatility: The output construction directly allows the COM
height z0, step frequency (inverse of the walking period 1

T ) and

the swing foot clearance zmax
sw to be individually chosen. Dif-

ferent combinations of the parameters render different walking
behaviors. The desired walking velocity in each plane is indi-
vidually stabilized via the H-LIP stepping, which is independent
of the chosen gait parameters. Additionally, for P2 orbits on the
robot, there are infinite orbits for realizing the same desired
walking velocity. The combination of the gait parameters and
orbit selections renders versatile walking behaviors on the robot.

Remark 2: In [1], a stepping-in-place gait was optimized on
the aSLIP and its periodic trajectories of the leg length were then
applied on Cassie. Different walking behaviors were realized
via perturbing the stepping-in-place gait by changing the step
size based on the H-LIP. The periodic leg length trajectories
indirectly realized the lift-off and touch-down behaviors on the
swing foot and rendered an approximately constant vertical
COM height. Here, the output is constructed in a more direct
and general fashion, which creates a better approximation from
the H-LIP to the robot. The same gait design also works on
robots without compliance. Moreover, the use of the aSLIP is
not necessary, and solving nonconvex trajectory optimization is
eliminated. Finally, the desired output trajectories are directly
constructed in closed-form, where the gait parameters such as
step frequency, vertical COM height, and swing foot clearance
can be directly changed continuously.

C. Joint-Level Optimization-Based Controller

Nonlinear controllers can be applied to drive the output Y in
(33) to zero. In particular, we consider using quadratic program
(QP) based controllers [13], [51] for stabilization, where the
contact constraints and torque limits can be included as the in-
equality constraints in the QP. When the foot contacts the ground,
the resultant GRF should satisfy the friction cone constraints and
the non-negativity constraints on the normal forces. This can be
encoded as: AFGRF ≤ 0, where A is a constant matrix. The
motors can only provide certain amount of torques at certain
speeds. Thus, we set: τlb(q̇) ≤ τm(q̇) ≤ τub(q̇), where τlb/ub is
the lower or upper bounds on the motor torques.

The control objective is to drive the output Y → 0. Here,
we illustrate two prominent approaches for realization: one
is in the task space control (TSC) formulation [51] through
minimizing the difference between the actual acceleration and a
desired acceleration, which yields stable linear dynamics on the
output; the other one is in the control Lyapunov function (CLF)
formulation [13] via an inequality condition on the derivative
of the Lyapunov function of the output to yield exponential
convergence.

For the TSC, the desired acceleration Ÿd is chosen as

Ÿd = −KpY − KdẎ (38)

with Kp,Kd being the feedback PD gains. An optimization
problem is formulated to minimize ||Ÿ − Ÿd||2 subject to the
physical constraints and the robot dynamics. Then the actual
output dynamics evolves closely to the desired linear stable
dynamics in (38), which thus realizes the control objective.
Since the acceleration Ÿ is affine w.r.t. the input torque, the
optimization problem is a QP.
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For the CLF, a quadratic Lyapunov function V (Y , Ẏ) is
constructed on the output Y and Ẏ , thus V (Y , Ẏ) → 0 if and
only if [Y, Ẏ ] → 0. The convergence condition of Y is enforced
via the derivative of V , i.e.,

V̇ ≤ −γV (39)

with γ > 0, which yields V (and thus Y) to decrease at least at
an exponential rate. As V̇ is affine w.r.t. the input torque, a QP
can be formulated on minimizing the norm of the input torque
subject to the inequality constraint in (39) and additional phys-
ical constraints. The two QP based controllers are summarized
as follows.

Remark 3: We do not intend to compare the two controllers
or propose any other variants of the QP-based controllers in this
article. They are merely used as tools to stabilize the output
to demonstrate the H-LIP based approach. With proper gain-
tuning, both controllers can perform equivalently.

VI. SIMULATION EVALUATION

We now realize and evaluate the approach on Cassie in simu-
lation. The simulation environment allows thorough evaluations
on the robot model at the stage before hardware realization. In
the simulation, we have full access to all the states of the system.
Thus, the information of contacts and the horizontal velocity of
the robot are exactly known, which provides a rigorous analysis
of the proposed approach.

Setup: The robot starts from a static standing configuration.
The dynamics of the robot are numerically integrated using the
ODE 45 function in MATLAB with event-based functions for
triggering domain switching. Target final velocities vtx and vty are
given with the goal of controlling the robot to realize these target
velocities. We first select an orbit composition and then design
continuous desired velocity profiles vdx/y(t) (by piecewise linear
trajectories for simplicity) to reach the target velocities. For P2
orbits, the desired step size should be specified. The desired
output trajectories are constructed via the H-LIP based gait
synthesis and stepping. The gait parameters such as the swing
foot clearance and step frequency are specified in the beginning.
The low-level optimization-based controller is solved at 1 kHz
using qpOASES [52]. The video of the simulation results can be
seen in [2].

1) Forward Walking: We first present forward walking as the
basic realization of the proposed H-LIP based approach. The
orbit composition is chosen as having a P1 orbit in its sagittal
plane and a P2 orbit in its coronal plane. The velocities are
chosen to be vtx = 1m/s, and vty = 0m/s, thus the robot only
progresses in its sagittal plane. We choose T = 0.35s, zmax

sw =
0.15m, zneg

sw = −0.02m, and the orbit-determining step width

of the P2 orbit is uy∗
L = −0.2m. The desired walking velocity

vdx(t) is chosen from 0 to ramp up to 1 m/s within 3 s. Fig. 12
plots the walking trajectories via the H-LIP based approach. The
H-LIPs are controlled to the desired walking and then the robot
is controlled to the walking of the H-LIP. The output trajectories
are well-tracked via the optimization-based controller, and the
resulting vertical COM has small velocities and accelerations.
The horizontal COM states of the robot converge with negligible
errors to the desired H-LIP states that realize the target velocities
in each plane.

Then we change the target velocity in the sagittal plane from
−1.5 to 1.5 m/s with a 0.5 m/s increment. Fig. 13 shows the
results. For clarity, in the phase portraits, we only plot the steady
walking behavior where the desired walking velocity becomes
constant (after 5 s). We also demonstrate that the evolution of the
error states is within the error invariant set. The error states in
each plane can be directly calculated from the preimpact states
of the robot and the desired states of the H-LIPs. To calculate the
error invariant set, we first numerically calculate the dynamics
error w in (12) from the evolution of the horizontal COM states
in each realized walking behavior: wk = xR

k+1 −AxR
k −BuR

k .
Since W cannot be calculated analytically, we use all w to
construct a polytope to numerically approximate W in each
plane. As K is chosen from the deadbeat controller, i.e., (A+
BK)2 = 0, the invariant set E = (A+BK)W ⊕W . The set
operation is calculated using the MPT [53] toolbox. Fig. 13(d)
shows that the error states are indeed inside the error invariant
sets.

2) Lateral and Diagonal Walking: The approach can also
realize walking to different directions by selecting different
desired velocities in each plane of the robot. Here, we present
walking in the lateral and diagonal directions. Fig. 14 illustrates
the converged walking behaviors with different choices of the
target velocities. The gait parameters are identical to the previous
examples. By tracking the desired velocity in each plane, the
robot walks in the desired direction. The converged orbits of the
horizontal COM states are also relatively close to the desired
orbits of the H-LIP in both cases. Moreover, by selecting dif-
ferent desired step width uy∗

L , different P2 orbits are realized in
the coronal plane with the same desired velocity vdy [see Fig. 14
(l-y) and (d-y)].

3) Variable Orbit Compositions: The two types of orbits of
the H-LIP provide four kinds of orbit compositions in 3-D. If
the kinematic constraints are neglected, all four types of orbit
compositions can be realized to achieve the same desired walk-
ing velocity. Fig. 15 illustrate the four realizations to achieve the
lateral walking with vty = 0.5m/s. Each realization is abbrevi-
ated by the type of orbit in each plane, e.g., sP1-cP1 indicates
both P1 orbits are selected in the sagittal and coronal plane. For
certain compositions, kinematic collisions can happen between
the legs. E.g., the sP1-cP1 gait with vtx,y = 0 clearly creates foot
overlaps. The complex leg design on Cassie further increases the
possibilities of kinematic collisions between the legs. Although
it is still possible to realize those compositions with certain
orbits, we only focus on the realization of the sP1-cP2 orbits
on the hardware.
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Fig. 12. Simulation results on a forward walking with vtx,y = [1, 0]m/s, uy
L
∗
= −0.2m: the trajectories of the horizontal velocities of the COM (red and blue

lines) in the sagittal plane (v–x) and the coronal plane (v–y) compared with the desired velocities vdx,y(t) (black lines) and the corresponding velocities of the H-LIP
(green circles); the phase trajectories of the horizontal states of the COM in the sagittal plane (p–x) and the coronal plane (p–y) compared with the H-LIP orbits
(black) at the target velocities; comparisons of the step sizes (u–x, u–y) between the robot (red circles in the sagittal plane and blue circles in the coronal plane) and
the H-LIP (green circles). (o) Output tracking with the red dashed lines indicating the desired output trajectories and the blue continuous lines indicating the actual
one: (o–z) the vertical COM trajectory z̃COM (the black line is the actual vertical COM position of the robot zCOM); (o–s) the vertical swing foot trajectory z̃sw (the
black lines are zsw); the horizontal trajectories of the swing foot in the sagittal plane (o–x) and the coronal plane (o–y). (z) Actual vertical COM acceleration (z–a)
and velocity (z–v), where the blue and red are the SSP and DSP trajectories, respectively.

Fig. 13. Comparison on forward walking with different target velocities vtx:
(a) forward velocities of the COM (continuous lines) compared with the desired
velocity profiles vdx(t) (dashed lines); (b) the converged orbits (red and blue
lines) of the sagittal COM states compared with the desired target orbits of the
H-LIP (black lines). (c) the converged orbits (the red is with vtx = 1.5 and the
blue is with vtx = −1.5) of the coronal COM states compared with the target
orbit of the H-LIP (black); (d) the error state trajectories (circles) and the error
invariant set Ex (the blue transparent box) in the sagittal plane.

Remark 4: As an additional verification, we also evaluate the
controller on a “virtually rigidified” Cassie without compliance
in simulation by fixing the spring joints by holonomic constraints
[letting Jh = [JT

s , JT
rod, J

T
Foot]

T and Fh = [τTs , FT
rod, F

T
GRF]

T in
(31)]. The walking is then modeled as a one-domain system
(TSSP = T, TDSP = 0). The gait is synthesized under the same
desired trajectories only without the DSP parts; all parameters

Fig. 14. Lateral (uy
L
∗
= −0.08m) and diagonal (uy

L
∗
= −0.3m) walking with

their converged orbits (the red in the sagittal plane (l–x, d–x) and the blue in the
coronal plane (l–y, d–y)). The cyan are the converged orbits of walking on Cassie
without compliance springs.

are kept exactly the same as these in the compliant walking.
Similar results are produced in terms of horizontal COM state
tracking (see Fig 14). After the faithful evaluation in simulation,
we next focus on presenting the hardware realization.

VII. EXPERIMENT EVALUATION ON CASSIE

A. Control Realization on Hardware

Unlike in simulation, the robot state is no longer completely
and exactly known on the hardware; the on-board sensors are
the inertia measurement unit (IMU) on the pelvis and the joint
encoders in the primary kinematic chain of the leg. Moreover, the
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Fig. 15. Simulated walking via different orbit compositions with the same
target velocity (vtx,y = [0, 0.5]m/s). The trajectories of the swing foot are
indicated by the red (left foot) and the blue (right foot) lines, with the rectangles
indicating the contact locations.

computation capacity of the on-board computer has to be taken
into consideration. Therefore, we first address the following
problems on the hardware.

1) Contact Detection: The robot Cassie is not equipped with
contact sensors to detect foot-ground contact, which makes it
challenging for real-time estimation and control. It is possible to
calculate the deflection of the spring joints and set a threshold for
contact detection. However, the springs can still have nontrivial
deflections in the swing phase due to the inertia forces in the
leg. Therefore, the threshold has to be set large enough to avoid
false detection of contact. However, this can cause significant
late-detection of impacts and early detection of lift-offs. Instead,
we use the measured torque from the input current (similar to the
proprioceptive sensing [54]) along with the spring deflections to
approximate rather than calculate the contact forces at the feet.
A threshold is then set on the magnitude of the forces to detect
contact.

One can also think about using (30) to approximate the
external forces in a precise manner; however only q̈x,y,zpelvis in q̈
is measured by the IMU and the uncertainty in the inertia mod-
eling can further introduce expected dynamics error in reality.
Since the vertical COM of the robot is controlled approximately
constant, we neglect the dynamics contribution to the contact
forces. The EOM in (30) becomes

G(q) = Bτm + JT
s τs + JT

h Fh (40)

where Fh = [FT
rod, F

LT

GRF, F
RT

GRF]
T . τm is measured from the mo-

tor current and τs is calculated from the spring deflections. This
equation is invariant w.r.t. the pelvis position qx,y,zpelvis , which is not
known. Thus, we set qx,y,zpelvis to 0. The rest of q are measured via
the IMU, joint encoders and leg kinematics. Fh can be directly
solved via the pseudoinverse of JT

h : Fh = pinv(JT
h )(G(q)−

Fig. 16. Contact detection via the GRF approximation: The transparent red
and blue lines are the norm of the actual GRF on the robot in simulation, the
dashed red and blue lines are the approximated GRF for contact detection. The
detected DSP is close to the actual DSP in simulation.

Bτm − JT
s τs). The calculated F L/R

GRF are then low-pass filtered
with a cutoff frequency of 100 Hz. A threshold is then set on
the norm of F L/R

GRF to determine if the foot is in contact with the
ground. Fig. 16 shows the contact detection via the approximated
GRFs compared with the actual GRFs in a simulated walking.
Since the dynamics effect is neglected, the magnitudes of the
GRFs are not accurate; however, by setting a reasonable thresh-
old (100 N), precise contact detections can be achieved during
normal walking.

2) H-LIP Based Velocity Approximation: The transitional
position and velocity of the floating-base qx,y,zpelvis and q̇x,y,zpelvis can
not be directly measured. q̇x,y,zpelvis is required for calculating the
COM velocity for realizing the walking. We implemented the
extended Kalman filter (EKF) in [55] for state estimation by
fusing the IMU and leg kinematics based on the detected contact.
This state estimation required nontrivial computation (a similar
estimation scheme in [56] has to be implemented on a secondary
computer on the robot). Moreover, when there is no contact
detected (e.g., when walking on unstable terrain), depending
on IMU itself quickly induces large velocity estimation errors.
Additionally, the magnetometer drift inside the IMU also creates
errors on the estimated velocities under certain circumstances.
Due to those concerns and practical hardware limitations, we
instead approximate the COM velocity based on the H-LIP
dynamics in the SSP.

We use the walking in the sagittal plane to illustrate the
approximation. Let p0 and v0 be the horizontal position and
velocity of the COM in the beginning of the SSP. The dynamics
of the horizontal COM in the SSP can be approximated by the
SSP dynamics of the H-LIP. Thus, the current COM state of the
robot [pt, vt] in the SSP can be approximated by[

pt, vt

]T
≈ eASSPt

[
p0, v0

]T
(41)

where ASSP is defined in (6). Let At := eASSPt. Given the mea-
sured positions p0 and pt and the current time t > 0 from the
beginning of the SSP, the velocity approximations are[

ṽ0

ṽt

]
=

⎡
⎣ −A

(1,1)
t /A(1,2)

t
1/A(1,2)

t

A
(2,1)
t − A

(1,1)
t A

(2,2)
t /A(1,2)

t
A

(2,2)
t /A(1,2)

t

⎤
⎦[

p0

pt

]
(42)

where the superscripts indicate the elements of the matrix At.
Thus, the continuous velocity approximation ṽt is obtained. The
prediction of the preimpact velocity ṽt=TSSP can also be continu-
ously approximated by the H-LIP dynamics in the SSP based on
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Fig. 17. Validation on the H-LIP based velocity approximation on a simulated
walking with vtx,y = [1, 0]m/s, uy

L
∗
= −0.2m: (v–x, v–y) the approximated

horizontal velocities of the COM ṽx(t) (red line) and ṽy(t) (blue line) in the
SSP compared with the actual velocities (dashed black lines); (e–x, e–y) the error
state trajectories ex,y and the new error invariant sets Ẽx,y (blue transparent
polytopes) in each plane compared with the error invariant sets Ex,y (white
polytopes with black continuous bounding lines) from Fig. 12.

the current state [pt, ṽt]
T and the time-to-impact TSSP − t. The

velocity approximation is solely based on the position of the
COM w.r.t. the stance foot, which only uses joint encoders and
orientation readings of the IMU and thus is robust to sensor
noises. Moreover, we show that this approximation is valid
for applying the H-LIP based stepping, only with generating
a different error invariant set.

Let ṽ− be the approximated velocity of the COM of the
robot at the preimpact. ṽ− = ṽt=TSSP is calculated from (42).
Let x̃R = [p−, ṽ−]T represent the approximated COM state at
the preimpact. Assuming the COM position of the robot is mea-
sured with a negligible error, x̃R − xR = [0, ṽ− − v−]T := δx,
where v− is the actual COM velocity of the robot at preimpact
event. Note that δx is bounded: the velocity error ṽ− − v− is
the integration of the dynamics difference between the H-LIP
and the robot in the SSP. The approximated state is used in
the H-LIP based stepping, i.e., uR = uH-LIP +K(x̃R − xH-LIP).
Therefore, the error S2S dynamics becomes

ek+1 = (A+BK)ek + wk +BKδxk︸ ︷︷ ︸
w̃k

. (43)

w̃ ∈ W̃ is bounded since w and δx are both bounded. This
consequently creates a new error invariant set Ẽ.

To validate this, we use the H-LIP based velocity approxi-
mations to replace the actual horizontal velocities of the COM
in the controller in simulation. The performance is comparable
with that using true COM velocity in the previous section. Fig. 17
shows the results on a simulated forward walking as a proof. As
the horizontal COM dynamics of the robot is close to the H-LIP
dynamics, the velocity approximation works well. Although the
new disturbance w̃ isw plus another term, it does not necessarily
mean that the size of W̃ and the resultant Ẽ are larger. Here, we
get a smaller set in the sagittal plane [see Fig. 17 (e-x)], and
the sets in the coronal plane are of similar sizes [see Fig. 17

(e-y)]. Note that the H-LIP based velocity approximation is not
designed as a general framework to replace any principled state
estimators for legged robots but is shown to work efficiently and
effectively along with our walking gait synthesis and hardware
limitations.

3) Joint-Level Controller: The optimization-based con-
troller in section V can be potentially implemented on the
hardware by utilizing the secondary computer on the robot. Here,
we apply a PD + Gravitation Compensation (PD+G) controller,
which in practice provides an equivalent tracking performance
and a much-lower computational effort. The PD+G controller
is directly implemented on the main computer on the robot,
which is written as: τm = τPD + τG, where τPD represents the
PD component and τG represents the gravitation compensation
part.

For the PD component, we directly map the desired accelera-
tion of the output Ÿd to the joint torques. Ÿd is identically chosen
to that in (38). Y and Ẏ are measured on the hardware. Note
that the output selections [e.g. (33)] are mainly functions of the
motor joints. The actual acceleration of the output is assumed
to be: Ÿ = JY q̈m + J̇Y q̇m, where JY = ∂Y

∂qm
. The desired ac-

celerations of the motor joints are applied as the motor torques:
τPD = q̈dm = J−1

Y (Ÿd − J̇Y q̇).
For the gravity compensation, we need to find joint torques

to cancel the gravitational terms in (40) based on the current
configuration and contact. The problem is inverse to the contact
detection. Given q, we find τG to minimize: ‖BτG + JT

s τs +
JT
h Fh −G(q)‖2. Note that the foot contact of the robot is

underactuated and thus there does not exist any set of joint
torques to completely cancel out the gravitational term unless
the foot is fully actuated. This yields a least square problem
of min : ‖AX− b‖2 where A = [Bm, JT

h ], X = [τTG , FT
h ]T ,

b = G(q)− JT
s τs. Similarly, this problem can be solved via

the pseudoinverse of A, i.e., X = pinv(A)b, which yields the
gravity compensation term τG.

B. Hardware Implementation Scheme

The robot is controlled via a remote radio controller that sends
commands to the robot. The on-board computer is programmed
to interpret the radio signals, read all the sensors on the robot,
and send torque commands to the robot. The implementation is
illustrated in Fig. 18. The remote radio commands are processed
to get the desired walking behaviors. The joysticks are used to
provide desired walking velocities vdx,y in the horizontal plane.
We use low-pass filters to smooth the reading of the joysticks.
Thus, the desired velocities between consecutive steps do not
vary significantly. The potentiometers on the remote controller
are used to continuously select the gait parameters, e.g., desired
step frequency, step width, nominal height, and swing foot
clearance. The H-LIP based gait synthesis and stepping calculate
the output based on the gait parameters, contact, and COM states.
The joint-level controller then calculates the motor torques and
sends them to the motor modules to stabilize the outputs. We
implement the controller on the on-board Intel NUC mini PC that
runs Simulink real-time kernel. The control loop is set at 1 kHz

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 13,2022 at 19:03:07 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIONG AND AMES: 3-D UNDERACTUATED BIPEDAL WALKING VIA H-LIP BASED GAIT SYNTHESIS AND STEPPING STABILIZATION 15

Fig. 18. Illustration of the hardware realization of the controller on Cassie.

Fig. 19. Illustrations of the output tracking and contact detection on the
hardware: the desired output trajectories (the blue dashed lines) and the actual
output trajectories (the red lines) of (a) the vertical COM position, and (b,c,d) the
vertical, forward, and lateral positions of the swing foot; (e) the contact detection
via the GRF, where the boxed regions indicate the DSP.

based on its computation capacity; further implementation opti-
mization, e.g., on computation speedup, may be possible. All the
experiment can be seen online from youtub.be/3FolwqfHFMI

In order to analyze the generated walking behaviors on the
hardware, we use the EKF [55] offline to get a continuous
estimation of the horizontal velocity of the COM on the robot.
The estimated velocities are used as references rather than the
ground truth. We cross-validated the estimator with an external
motion capturing system: velocity errors are within 0.1 m/s in
the sagittal plane and 0.06 m/s in the lateral plane. In general,
the estimation has non-neglectable errors that in nature come
from the imperfections of the dynamics models and sensors.

C. Directional Walking

We demonstrate directional walking behaviors on the robot
by using the joysticks on the remote controller to steer the robot
to its forward, backward, and lateral directions [3]. Fig. 20
shows forward walking [3] with Fig. 19 showing the output

Fig. 20. Trajectories of a forward walking with varying target velocities.
(v–x, v–y) plot the horizontal COM velocities including the desired velocities
vdx,y(t) (the black dashed lines), the velocity in the SSP from the H-LIP based
approximation ṽx,y (the red lines), the predicted preimpact velocity ṽ−x,y (the
blue lines), and the estimated velocities v̂x,y (the gray lines). (p–x, p–y) plot the
horizontal states in the sagittal (in different time segments) and coronal plane,
respectively. The black orbits are the desired H-LIP orbits. (s–x, s–y) plot the
error state trajectories (red and blue circles) inside the calculated error invariant
sets Ẽx,y (transparent blue polytopes) in each plane.

tracking. The approximated velocities from the H-LIP are com-
pared with the estimated velocities and the desired velocities.
The desired walking velocities are tracked within reasonable
errors. The error invariant sets are approximated in the same way
(in Section VI), and the error states are all inside the invariant
sets. Note that the error invariant sets are larger than those in
simulation in Fig. 17. This potentially is because the dynamics
errorw is calculated using imperfect hardware data:xR contains
the measurement of pR and estimated velocity ṽR at the detected
impact event, and uR is calculated from the kinematics and
encoder readings. These errors directly yield larger sets W̃x,y

and thus larger sets Ẽx,y .
Additionally, the translational dynamics and transversal dy-

namics can be controlled separately. We thus implement a turn-
ing controller that only changes the hip yaw angles and keeps
the stepping controller intact. With turning, the robot can be
joystick-controlled easily in confined environments [3].

D. Versatile Walking

Now we utilize the potentiometers on the remote controller to
vary the gait parameters in real-time. The potentiometer readings
can jitter, and we do not low-pass filter the values to show
the robustness of our implementation. Fig. 21 demonstrates
stepping-in-place with varying the four parameters, the ranges
of which are listed in Table I. All the parameters can be varied
continuously, and the H-LIP based approach still can stabilize
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Fig. 21. Illustration of the versatility of the realized walking by varying step
frequency (v1), step clearance (v2), step width (v3), and COM height (v4).

TABLE I
VERSATILE WALKING PARAMETERS

the walking. Fig. 22 demonstrates the continuous changes of the
values in the experiment [4]. Additionally, [4] shows forward
walking behaviors with different COM heights.

These parameters do not strictly include all the admissible
ones for the robot. Complete characterization of the admissible
ranges of parameters has to explore the high-dimensional state
space of the robot on its kinematic and dynamical feasibilities
under a set of chosen control gains, which is inherently challeng-
ing; gait parameter ranges are also conditionally coupled, e.g., a
tall COM height provides a larger range of the swing foot clear-
ance. Empirically speaking, for parameters outside of the ranges
in the table, the walking can be kinematically/dynamically infea-
sible or destabilized under the current controller. For instance,
the step width can not be too small or too larger, and the desired
COM can not be too tall or too low simply due to the joint
limits on the robot. If the foot clearance is extremely low, the
robot then has a trivial SSP and can not stabilize its walking
via stepping; if it is too high, the vertical swing trajectory then
requires large accelerations to lift-off and touch-down and thus
exceeds the joint actuation limits. Similarly, the actuation limits
prevent TSSP from being too small to track the swing trajectories.
If the duration is too long, the robot can fall over (pR exceeds
its feasible range and zCOM thus decreases) before the swing leg
strikes the ground to stabilize it.

The changes of the COM height and the step duration change
the S2S dynamics of the H-LIP [e.g., (9)]. The H-LIP stepping
directly responds to the new S2S dynamics. Note that the vertical

Fig. 22. Trajectories of the (a) COM height and (b) vertical height of the swing
foot in terms of the actual outputs, (c) the desired step width compared with the
target step size u∗

L/R (black lines), and (d) the duration of the walking.

COM height is assumed constant on the H-LIP and that of the
robot is controlled approximately constant. The height, however,
can change between steps, as long as the vertical dynamics is
not causing significant disturbance to the horizontal dynamics.
The change of the swing foot clearance can change the impact
velocity and potentially change w. Similarly, the step frequency
variation changes the integration of the dynamics error in the
continuous domains, which then change w. In the experiment,
the qualitative and quantitative effects of these parameters on w
and thenE are not analyzed due to the existence of the horizontal
velocity error (from the H-LIP based velocity approximation in
the control or the state estimation in the analysis). Instead, the
experiment shows that versatile walking behaviors are stably
generated with the parameter variations on the fly.

E. Disturbance Rejection

Last, we demonstrate the robustness of the walking controller
on the hardware [5]. Since the H-LIP stepping provides COM
state-dependent step size planning in (34), the robot instan-
taneously and constantly reacts to external disturbances. We
consider two types of disturbances: external pushes and ground
variations. The external pushes directly disturb the S2S dynam-
ics of the robot; the ground variations change the domain du-
rations, contact conditions, and vertical COM behaviors, which
indirectly disturb the horizontal S2S dynamics.

Both disturbances perturb the hybrid walking dynamics in
very complex ways. It is inherently difficult to quantitatively
characterize how the external disturbances affect the continuous
dynamics. The S2S dynamics however can be concisely repre-
sented in the same form as

xR
k+1 = AxR

k +BuR
k + wk + wexternal

k (44)
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where wexternal
k represents the influence of the external distur-

bances to the S2S dynamics of the horizontal COM states.
Applying the H-LIP based stepping [uR = uH-LIP +K(x̃R −
xH-LIP)] yields the error S2S dynamics

ek+1 = (A+BK)ek + w̃k + wexternal
k (45)

where w̃ = w +BKδxk is defined in (43) with δxk being the
“measurement error” on the horizontal COM state from the
H-LIP based velocity approximation under the external distur-
bance. Since the external disturbance can not be characterized
as a priori, the goal of the stepping controller is simply to keep
e small. When the external disturbances are bounded, wexternal

and δxk (and thus w̃) are bounded. Then the error state could
potentially live inside the undisturbed Ẽ (when wexternal are
small) or converge to a different set (when wexternal are large).
However, on the physical robot, under excessive disturbances,
e grows quickly, and it is possible that the desired step sizes
ud from the deadbeat controller can not be realized due to the
kinematic feasibility (uR ∈ U ) or dynamic feasibility on swing
foot tracking; the robot state xR = xH-LIP + e could exceed its
feasible set X due to joint limits, and the robot could no longer
well-track the outputs, e.g., remain its vertical COM height,
which leads to falls.

Fig. 23 demonstrates the walking with terrain variations that
include both indoor and outdoor experiments, where the robot
walks blindly without using external sensors. The operator only
uses the joystick to provide desired walking directions and
velocities. Although the terrain could deform, roll, elevate, drop,
or become unstable, the controller was able to balance the robot
and track the desired walking by reactively placing the foot
to reject the terrain disturbances. The continuous horizontal
velocities have large variations (partially from the estimator)
as shown in Fig. 23; the error states could lie inside Ẽ under
mild terrain variations.

Fig. 24 shows the results on push recoveries in both sagittal
and lateral plane. The operator sporadically applies horizontal
push forces on the robot. The desired behavior is stepping-in-
place. As expected, the error state e can temporarily go outside
of the undisturbed invariant set Ẽ. The stepping controller then
brings e back in Ẽ. In terms of the horizontal velocity, the
robot is pushed to have large velocities and then the stepping
controller drives the robot back to its nominal walking behavior.
If the push is excessive, as is predicted, the robot could fall
over due to its kinematic/dynamic incapability to realize the
desired ud or remain upright with the resulting pR. Since the
robot is designed with larger kinematic ranges in its sagittal
plane than the lateral plane, it can resist larger pushes in the
sagittal plane [5]. Although the deadbeat stepping controller is
not yet synthesized to maximize robustness, the experiments
demonstrate the controller successfully rejecting reasonably-
large external disturbances.

VIII. CONCLUSION

To conclude, we present a H-LIP based approach to control
foot-underactuated bipedal walking. Periodic orbits of the H-LIP
were comprehensively characterized in its state space and then

Fig. 23. Indoor and outdoor experiments on walking with terrain variations:
on cluttered and uneven floor, an unstable obstacle, and grassy and uncertain
terrain. Analysis on walking on grassy terrain: (v) the estimated forward velocity
(gray line) and the desired velocity (black dashed line), (p) the horizontal state
trajectory (the red) in the sagittal plane compared with the desired orbit of the
H-LIP (the black) for a walking segment with an approximately constant vdx of
0.3 m/s, and (e) the error state trajectory compared with the undisturbed error
invariant set Ẽx.

orthogonally composed for 3-D walking. The walking behaviors
of the H-LIP were then approximately realized on the physical
robot via the H-LIP based gait synthesis and stepping stabi-
lization. The implementation was straightforward and compu-
tationally efficient. There were no nonconvex optimizations to
be solved offline or online. The realized walking behaviors were
demonstrated to be both highly versatile and robust.

We next discuss the implications, limitations, extensions, and
future directions of the approach as the end.

A. Implications

1) Approximated Analytical Continuous “gait Library”:
The orbit characterization of the H-LIP can be viewed as provid-
ing an approximated analytical “gait library” for the horizontal
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Fig. 24. Push recoveries on Cassie with analysis of the lateral pushes: (v)
the estimated horizontal velocity, (p) the horizontal state trajectory (the blue)
compared with the desired orbit of the H-LIP (the black), and (e) the error state
trajectory compared with the undisturbed error invariant set Ẽy .

COM states of the bipedal robot. The “gait library” of the H-LIP
is continuous, i.e., filling the state-space of the horizontal COM.
Although the horizontal COM of the robot does not necessarily
behave identically to the orbit, it converges closely to the orbit
under the H-LIP stepping. More importantly, transitions between
“gaits” or nonperiodic walking behaviors can be easily realized
via the H-LIP stepping.

2) Gait Synthesis and Characterization: The 3-D compo-
sition of planar orbits offers a way of synthesizing and char-
acterizing 3-D bipedal walking gaits. The gait synthesis and
characterization via composition of planar orbits can potentially
be extended to other multilegged systems, e.g., the bounding
behavior on quadrupedal locomotion [57] can be viewed as
producing a P2 orbit in its sagittal plane. The extension appears
to be nontrivial but possible.

3) Model-Free Planning: The H-LIP based approach can be
viewed as a “model-free” approach, where the robot model is
not used in the planning. The walking of the H-LIP is shown
to approximate the general hybrid nature of alternating support
legs in bipedal walking. The planning on the hybrid dynamics
of all the degrees of freedom (dofs) is encapsulated into the
control on the horizontal dynamics of the COM; the individual
dynamics of each dof is not specifically described. As a result,

the approach can tolerate the imperfections of the robot modeling
in the planning of walking.

4) Interpretation of Stability: The stability of underactuated
bipedal walking is typically understood and analyzed on the
periodic orbit of the robot [7]. The S2S dynamics formulation
provides a different perspective toward understanding the sta-
bility of walking. Assuming that the strongly actuated dynam-
ics (the outputs) can be stabilized, the underactuated/weakly
actuated dynamics (the horizontal COM states) are shown to
be directly controlled by the step sizes in the S2S at the step
level. Stabilization on the underactuated dynamics can thus be
directly synthesized. The stability of the walking is no longer on
the periodic orbits but on the viability of the discrete horizontal
COM states in its feasible set.

B. Limitations and Potential Solutions

1) Pelvis Orientation and Swing Foot Trajectory: The
pelvis/upper-body orientation is fixed, and the swing foot tra-
jectory is designed in the simplest way possible. Both are not
optimized in terms of any criteria, e.g., energy consumption. It is
possible to learn a low dimensional representation of the energy
consumption in terms of parameterized trajectories of the swing
foot or the pelvis. Optimal trajectories can then be constructed
on the swing foot and the pelvis.

2) Performance Accuracy: The error state e directly de-
scribes the performance of the stepping controller, which drives
the robot to a desired walking of the H-LIP. The error is not
controlled to zero but in the error invariant set E. There are two
ways to further improve the performance in terms of reducing
e. The first is to develop a better approximation of the S2S
dynamics so that the model differencew is smaller, which will be
further discussed later. The second is to employ a controller that
can directly reduce the error e; e.g., integral control is potentially
able to mitigate the error.

3) Kinematic Feasibility: The robot joints are designed with
limited ranges of motion, which limit the behaviors (i.e., the
walking speeds and orbit compositions) on the robot. Addi-
tionally, the legs can internally collide with each other within
their ranges of motion. This is more evident on Cassie due to its
complex design. The stepping controller presented in this article
does not systematically take this into consideration. Instead, the
kinematic feasibility is reflected on the choices of the desired
walking of the H-LIP. In practice, this is sufficient to produce
safe (despite conservative) walking on the robot; however, the
feasibility is no longer guaranteed under external disturbances.
Despite being very challenging, the kinematic feasibility should
be identified systematically. Advanced optimization-based ro-
bust stepping controllers [58], [59] can be explored to include
the state and input bounds from the kinematic feasibility; the
cost could be optimizing certain performance criteria such as
walking speed or simply minimizing the error states, which
can further increase the robustness to external disturbances to
prevent falling.

4) Dynamic Feasibility: The realized walking behavior is
assumed to be dynamically feasible; the desired trajectories of

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 13,2022 at 19:03:07 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIONG AND AMES: 3-D UNDERACTUATED BIPEDAL WALKING VIA H-LIP BASED GAIT SYNTHESIS AND STEPPING STABILIZATION 19

the outputs are assumed to be trackable given the hardware de-
sign. Optimization-based controller includes the torque bounds.
However, theoretically, it does not guarantee the trajectories
(especially the swing foot) to be well-tracked, e.g., when the
walking duration is too small, the motors may not be able to
move fast enough to drive the swing foot to the desired location.
In practice, this can be identified empirically on the hardware
despite the loss of theoretical soundness.

5) Vertical COM: The vertical COM is controlled approx-
imately constant in each step. It permits gradual variations
of the COM height between steps. It is not yet known if it
could dramatically change the COM height within a step. One
possible solution to enable this is to employ a model (e.g.,
a height-varying pendulum [60], [61]) that captures both the
vertical and horizontal COM behaviors. Varying vertical COM
also alters the kinematic range of pR and uR and the horizontal
S2S dynamics, which potentially could increase the walking
robustness to external disturbances.

C. Extensions and Future Directions

1) Global Position Control: The H-LIP based stepping can
also be used for controlling the global position [62] of the
underactuated bipedal robot [63], [64] by including the global
position in the S2S dynamics. Then the H-LIP stepping can
be used to approximately control the global position of the
robot, where the feedback is on the error in terms of the global
horizontal position, local horizontal position (w.r.t. the stance
foot), and the horizontal velocity of the COM.

2) Walking Over Rough Terrain: The H-LIP and the robot
are assumed to walk on flat terrain here. The walking synthesis
is shown to stabilize the robot walking on mildly uneven terrain.
The H-LIP based approach can also be rigorously extended to
walk on stairs, slopes and general rough terrains [23]. A linear
S2S dynamics approximation can be obtained if the vertical
COM position is controlled with an approximately constant
height from the ground. However, it is nontrivial to control the
vertical COM of a compliant robot to follow certain desired
trajectories, which will be one of the future work.

3) Improving S2S Approximation: The S2S dynamics of the
H-LIP is a linear model-free approximation and renders closed-
form controllers for stabilization. The S2S approximation can
potentially be improved, e.g., different dynamics quantities such
as the angular momentum [44], [48] can also be explored for
improvement. It is also possible to investigate data-driven ap-
proaches (e.g., [32], [38], [59]), which could potentially offer
better approximations and thus improve the performances on
the stepping stabilization.

4) On Fully-Actuated Humanoid Walking: The H-LIP based
approach can also be potentially applied toward walking on
fully actuated humanoids. The foot is then actuated but with
limited controls, which comes from the ankle actuation and
ZMP constraint on the support polygon. The foot actuation
helps to control the robot. Therefore, in the future, we will
explore the integration with H-LIP based approach and the
foot actuation on humanoids for generating highly dynamic and
versatile behaviors.

APPENDIX A
PROOFS ON THE H-LIP

Proof of Theorem 1: Combining (7) and (5) yields (17), and
p+ = −p−, plugging which into (5) yields (18).

Proof of Theorem 2: We can first show that, any state on the
line v = −σ2p+ d2 in the beginning of the SSP will flow to
the line v = σ2p+ d2 at the end of the SSP, with d2 being a
constant. This is easily proven by using (7). Then an arbitrary
state is chosen, and it is easy to show the step sizes must be
uL/R = 2p−L/R + TDSPv

−
L/R to get a two-step orbit.

To derive d2 from the desired velocity, we first select an
arbitrary state [p0,−σ2p0 + d2] as the initial state of the P2 orbit.
The rest of the boundary states can be calculated as functions
of p0 and d2. Then the sum of the step sizes is u∗

L + u∗
R =

d2(TDSP + TDSPcosh(TSSPλ) +
2
λ

sinh(TSSPλ)), which is equal
to 2vdT . Solving this for d2 yields (23).

Proof of Proposition 3: This proof follows the previous para-
graph by starting an arbitrary state [p0,−σ2p0 + d2] as the initial
SSP state of the P2 orbit. Letting uL = uR and solving for p0
yields p0 = −d2sinh(TSSPλ)

2λ
. The rest follows immediately.

Proof of Proposition 4: This proof is similar to the proof of
Theorem 2. First, it is easy to show that any initial state on the
line v = −σ1(p+ d1) will flow to the line v = σ2(p+ d1) after
TSSP. Similarly, any initial state on the line v = −σ1(p− d1)
will flow to the line v = σ2(p− d1) afterTSSP. Then, an arbitrary
state is chosen on the line v = σ2(p+ d1) (or equivalently v =
σ2(p− d1)), and it is easy to show the step sizes must be uL/R =
2p−L/R + TDSPv

−
L/R to get a two-step orbit.

APPENDIX B
BÉZIER POLYNOMIALS

The desired output trajectories are designed via Bézier poly-
nomials:

b(t) = β

(
t̄(t) :=

t

T

)
:=

M∑
k=0

βk
M !

k!(M − k)!
t̄k(1− t̄)M−k,

where t̄ ∈ [0, 1] and βk are the Bézier coefficients. The follow-
ing table lists the coefficients, where 1N indicates a row vector
of size N with all elements being 1.
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