
Realizing Simultaneous Lane Keeping and Adaptive Speed Regulation
on Accessible Mobile Robot Testbeds

Xiangru Xu, Thomas Waters, Daniel Pickem, Paul Glotfelter, Magnus Egerstedt, Paulo Tabuada,
Jessy W. Grizzle and Aaron D. Ames

Abstract— This paper presents experimental results on novel
robot testbeds that allow the evaluation of the simultaneous im-
plementation of adaptive speed regulation and lane keeping in
a safe, education-centric, and inexpensive manner. The under-
lying algorithms are based on a control Lyapunov function for
performance, a control barrier function for safety, and a real-
time quadratic program for mediating the conflicting demands
of performance and safety. The Robotarium used for this work
allows students, as well as researchers less experienced with
hardware, to experiment with advanced control concepts in a
safe and standardized environment.

I. INTRODUCTION

Designing controllers that enforce different and sometimes
conflicting objectives is a recurring challenge in many real
systems, such as robotic and automotive systems. This is es-
pecially crucial for systems in which stringent safety-critical
specifications must be guaranteed at all times, while also
providing the performance expected by a user [1]. Advanced
Driver Assistance Systems (ADAS) are a prime example,
where passenger and commercial vehicles are being outfitted
with multiple safety or comfort modules [2]. Lane keeping,
for example, controls a vehicle’s steering to keep it within
its lane, while adaptive cruise control regulates a vehicle’s
speed to a user-set constant when there is no preceding
vehicle in the lane, and maintains a safe following distance
when a preceding vehicle is detected [3], [4]. Because ADAS
control modules can be activated concurrently in today’s
vehicles, designing provably correct control software for the
simultaneous operation of two or more control modules is
crucial and has attracted considerable attention (see [5], [6],
[7] and references therein).

Set invariance is a widely used means to both specify
and prove safety properties [8], which is often established
through the use of barrier functions (also known as barrier
certificates). The barrier function has proved popular because
it provides a certificate of set invariance without the difficult
task of computing a system’s reachable set [9], [10]. Inspired

This work is supported by NSF grants CNS-1239037, CNS-1239055 and
CNS-1544332.

X. Xu and J. W. Grizzle are with the Depart. of Electrical Engi-
neering and Computer Science, University of Michigan, Ann Arbor, MI,
{xuxiangr,grizzle}@umich.edu. P. Tabuada is with the De-
part. of Electrical Engineering, UCLA, CA, tabuada@ucla.edu.
W. Thomas is with the School of Mechanical Engineering, D.
Pickem, P. Glotfelter and M. Egerstedt are with the School of
Electrical and Computer Engineering, Georgia Institute of Tech-
nology, Atlanta, GA, {thomas.waters,fdaniel.pickem,
paul.glotfelter,magnus}@gatech.edu. A. D. Ames is
with the Depart. of Mechanical and Civil Engineering, California Institute
of Technology, Pasadena CA, ames@cds.caltech.edu.

by the automotive safety-control problems, a control barrier
function (CBF) is proposed in [11], which extends the normal
barrier function condition to only requiring a single sub-level
set to be controlled invariant, and extends barrier functions
from ODEs to control systems. When CBFs are combined
with control Lyapunov functions (CLFs) representing a
control objective through a quadratic programming (QP)
framework, families of control policies that guarantee safety
can be designed; moreover, the control objective is mediated
whenever safety and performance are in conflict. This CBF-
CLF-QP approach has been used in various applications such
as automotive safety-critical systems, bipedal robots, and
multi-agent systems [12], [13], [14], [15], [16], [17].

This paper uses the Khepera robot testbed [18] and the
Robotarium testbed [19] to explore the real-time hardware
implementation of adaptive speed regulation and lane keep-
ing simultaneously using the CBF-CLF-QP approach. Ex-
ploring a hardware implementation of CBF-CLF-QPs allows
us to check for potential challenges that arise due to mod-
eling errors, sensor sampling rates, or accuracy limitations
of real systems, paving the way for future testing of the
algorithms in full-sized vehicles. Furthermore, the imple-
mentation serves as an educational example to show how
the Robotarium allows students to work with a reasonably
sophisticated safety-critical control problem in a (personally)
safe and relatively inexpensive setting. For comparison pur-
poses, the Khepera testbed, which uses a costly OptiTrack
camera system and Khepera robots, is also used to implement
the CBF-CLF-QP algorithms.

The main contributions of this paper include:

• the hardware implementation of a provably correct
controller that achieves adaptive speed regulation and
lane keeping simultaneously;

• the comparison of experimental results on the Robotar-
ium with results on a more costly Khepera system;

• illustrating a setting where students can gain hands-on
familiarity with a safety-critical system in an inexpen-
sive and safe manner.

The remainder of the paper is structured as follows.
Section II introduces the robot model and testbeds that are
used in the experiments. Section III presents the CBF-CLF-
QP control method and Section IV introduces the implemen-
tation details in the experiments. The experimental results
and their comparison with the simulation results are given in
Section V, and finally, some conclusions in Section VI.

2017 IEEE Conference on Control Technology and Applications (CCTA)
August 27-30, 2017. Kohala Coast, Hawai'i, USA

978-1-5090-2182-6/17/$31.00 ©2017 IEEE 1769

II. ROBOT MODEL AND EXPERIMENTAL PLATFORMS

In this section, we first present the robot model that is
utilized in the experiments. Next, we introduce two exper-
imental platforms, namely, the Khepera robot testbed and
the Robotarium, which are used to demonstrate the adaptive
speed regulation and lane keeping safety algorithms.

A. The Unicycle Robot Model

The standard unicycle model is given in (1) asẋẏ
ψ̇

 =

v cos(ψ)v sin(ψ)
ω

 . (1)

Figure 1 shows the coordinates (x, y), ψ, v, ω representing
the 2D position, the orientation, and the longitudinal and
angular velocities of the robot, respectively.

When the longitudinal force and the angular torque are
taken as inputs to the model, we have v̇ = ul

m and ω̇ = ua

Iz
where ul and ua are the force and torque control inputs,
respectively, Iz is the moment of inertia about the z-axis,
and m is the mass of the robot. The relative degree of
the x and y states for ul and ua are not equal, which is
inconvenient for the input-output feedback linearization that
will be explained later. To overcome this, we follow [20],
[21] and references therein and choose a point of interest
located a distance a > 0 forward of the wheel axis, as
shown in Figure 1. Noting that the change of coordinates
modifies the derivative of the longitudinal velocity term, with
the addition of a centripetal acceleration term represented by
aω2, we arrive at the unicycle model

ẋ
ẏ
v̇

ψ̇
ω̇

 =

v cos(ψ)− aω sin(ψ)
v sin(ψ) + aω cos(ψ)

ul

m − aω
2

ω
ua

Iz

 . (2)

In what follows, we denote x = [x, y, v, ψ, ω]>.

y

x

𝜙

𝜓

Fig. 1: (left) States of the unicycle robot. (right) Modified
point of interest.

Remark 1: Compared with the model in [20], [21], which
has the longitudinal and angular reference velocities as the
input, the model (2) has the longitudinal force and the
angular torque as input, which are used in our controller
design shown later.

The angular position of the robot with respect to the origin
is denoted by φ (see Figure 1) and is useful for the path

tracking algorithm used in the experiments. Clearly, φ =
atan(y/x) and its time derivative is

φ̇ =

√
(aω cos(φ− ψ)− v sin(φ− ψ))2√

x2 + y2
. (3)

In this paper, the robots move along a desired path defined
in polar coordinates by

Rpath = R+ b sin(nφ). (4)

Here, R is the mean radius of the path, b is the amplitude
of the sinusoidal variation of the path, and n is the number
of periods in the path.

B. Experimental Testbeds

This subsection introduces the two testbeds that are used
for the experiments: the Khepera robots and the Robotarium.

1) Khepera Robot Testbed: The Khepera robot testbed
was provided by the GRITS lab at the Georgia Institute of
Technology [18]. A Khepera robot is shown in Figure 2.

Fig. 2: (left) Khepera III robot, (right) GRITSBot from the
Robotarium.

Sensing. A model-based solution to the speed regula-
tion and lane keeping control problems requires knowledge
of each robot’s position, orientation, and velocity. In the
Khepera robot testbed, the position and orientation data are
collected using 10 OptiTrack S250e motion capture cameras.

Actuation. The Khepera III robot uses two DC motors,
where each motor actuates a single wheel in the differential
drive system. The two motors are powered by a shared
7.4V, 1350mah LiPo battery. The input signal to each motor
corresponds to shaft speed and is transmitted to the motor via
pulse-width modulation (PWM). For later use, it is important
to note that the PWM signal, because it commands motor
shaft speed, does not correspond to either the force or
torque control input used in the model. The force and torque
inputs from the adaptive speed regulation and lane keeping
controllers will be integrated through the model to produce
equivalent motor speeds, which will then be converted to a
PWM-command signal for use in the control loop and the
embedded electronics.

Embedded Computing. Each Khepera III robot is
equipped with a 600MHz ARM processor and 128Mb RAM,
embedded Linux, and a WiFi module for communicating
via a wireless router. Control inputs are computed on a
centralized computer and sent to the robot via WiFi.

2) The Robotarium: The Robotarium was conceived be-
cause multi-robot testbeds constitute an integral and essential
part of the multi-robot research cycle, yet they can be

1770

prohibitively expensive, complex, and time-consuming to
develop, operate, and maintain. As a swarm-robotic testbed
that can be accessed remotely through a web interface1,
the Robotarium gives users the flexibility to test a vari-
ety of multi-robot algorithms (see [19],[14]). In particular
the Robotarium tackles the challenge of robust, long-term,
and safe operation of large groups of robots with minimal
operator intervention and maintenance. In its current im-
plementation, the Robotarium contains 20 miniature ground
robots, the GRITSBots shown in Figure 2 (see [22]). These
inexpensive, differential-drive robots simplify the operation
and maintenance of the Robotarium through features such
as: (i) automated registration with a server and overhead
tracking system, (ii) automatic battery charging, and (iii)
wireless (re)programming.

Unlike the Khepera testbed, the Robotarium also offers
a MATLAB-based simulator that closely approximates the
behavior of the GRITSBots through a parameterized unicycle
model and a model of measurement latency. Therefore,
controls code developed using the Robotariums simulator can
be deployed onto the Robotarium with no or minor modi-
fications. This simulator gives users the ability to rapidly
iterate through simulation and testing phases, allowing for a
straightforward implentation process.

Sensing. Similar to the Khepera testbed, the Robotarium
relies on centralized overhead tracking. Instead of an Op-
tiTrack system, however, the Robotarium employs a web
camera-based setup that uses a single Microsoft Lifecam HD
camera running at an update rate of 30 Hz and a resolution
of 1280x720 pixels. ArUco tags2 attached to each GRITSBot
allows the system to determine the robot’s position and
orientation.

Actuation. A GRITSBot is equipped with two miniature
stepper motors, each actuating a single wheel. The advantage
of stepper motors is that their velocity can be determined
without encoders by simply counting the number of steps
a motor has moved. The additional complexity of control-
ling stepper motors is handled via a custom motor board
that houses an Atmega168 microcontroller and executes a
velocity controller onboard. Each GRITSBot is powered by
a single 3.7V, 400 mAh LiPo battery resulting in a runtime
of up to 40 minutes on a single charge.

Embedded Computing. A GRITSBot is equipped with an
ESP8266, a WiFi-enabled microcontroller equipped with 160
KB of RAM running at 160 MHz. Given these specifications,
a GRITSBot is not capable of hosting an operating system,
yet it is powerful enough to handle wireless communication,
pose estimation, low-level control, as well as high-level
behaviors. Similar to the Khepera-based setup, control inputs
are computed on a centralized computer and sent to the robot
via WiFi.

III. AUTONOMOUS AUTOMOTIVE CONTROL METHODS

The approach to achieve lane keeping and adaptive speed
regulation simultaneously is briefly introduced in this section.

1See www.robotarium.org
2ArUco is an OpenCV-based library for Augmented Reality applications.

By encoding the safety specifications as CBF conditions
and the performance as CLF conditions with relaxation
parameters, the control policy is generated by solving an
online QP that combines CBFs and CLFs.

A. Control Barrier Functions

Some basic results in [12] are reviewed first. Given a
continuously differentiable function h : Rn → R, define a
closed set C, which is assumed to be nonempty and without
isolated points, by

C = {x ∈ Rn : h(x) ≥ 0}. (5)

Consider an affine control system of the form

ẋ = f(x) + g(x)u, (6)

with f and g locally Lipschitz continuous, x ∈ Rn, and
u ∈ U ⊂ Rm.

Definition 1: [12] Given a set C ⊂ Rn defined by (5), the
continuously differentiable function h : Rn → R is called
a (zeroing) control barrier function defined on set D with
C ⊆ D ⊂ Rn, if there exists a constant γ > 0 such that

sup
u∈U

[Lfh(x) + Lgh(x)u+ γh(x)] ≥ 0, ∀x ∈ D. (7)

Given a CBF h, for all x ∈ D, define the set

Kzcbf(x) = {u ∈ U : Lfh(x)+Lgh(x)u+γh(x) ≥ 0}. (8)

The following result guarantees the forward invariance of C
when inputs are selected from Kzcbf(x).

Theorem 1: [12] Let C ⊂ Rn be a set defined by (5) for
a continuously differentiable function h. If h is a CBF on D,
then any locally Lipschitz continuous controller u : C → U
satisfying ∀x ∈ D, u(x) ∈ Kzcbf(x), will render the set C
forward invariant.

The unicycle model (2) can be expressed as an affine
control system shown in (6), with f(x),g(x) given in an
obvious way.

Adaptive Speed Regulation. Similar to the adaptive
cruise control on vehicles, in adaptive speed regulation of
mobile robots, the following robot must always maintain a
safe time-headway with the lead robot, and achieve a user-set
longitudinal speed whenever possible.

While achieving the user-set speed is a soft constraint that
will be discussed in the next subsection, maintaining a safe
time-headway is a hard constraint, which can be expressed
as D ≥ τvf where D is the distance between the lead and
following robots, vf is the speed of the following robot,
and τ is the minimum allowable time headway, in seconds,
between the two robots. Therefore, the following CBF is
chosen for this speed regulation safety specification,

hasr = D − τvf . (9)

Lane Keeping. The objective of lane keeping is to keep
the robots within its lane boundary. Therefore, the lane
keeping specification for the robot can be expressed as
|ylat| ≤ dmax where ylat represents the lateral displacement
of the robot w.r.t. the desired path in road fixed coordinates,

1771

and dmax is the width of the path. Different CBFs can be
used, such as the one introduced in [23]

hlk = dmax − sgn(vlat)ylat −
1

2

v2lat
amax

, (10)

where sgn(·) is the sign function, amax is the maximum
allowable lateral acceleration and vlat is the lateral velocity
of the robot in road-fixed coordinates, or the following CBF

hlk = 1− y2lat
d2max

− 1

2
v2lat. (11)

Both (10) and (11) ensure that hlk ≥ 0 implies |ylat| ≤ dmax.

B. Control Lyapunov Functions

While the safety specifications need to be respected at
all times, there are three performance objectives that should
be achieved as much as possible: 1) v → vd, where vd is
the desired longitudinal velocity of the following robot; 2)
ω → 0, which serves to create a smoother path along the
course; 3) (x, y) → (Rpath cos(φ), Rpath sin(φ)) where the
right hand side is the tracking point in the desired path. To
implement the performance objectives, the goal is to drive
the following three outputs to zero:

η1 = v − vd,
η2 = ω,

η3 =

[
x−Rpath cos(φ)
y −Rpath sin(φ)

]
.

Remark 2: It is interesting to point out that driving η2 and
η3 to zero are contradictory objectives, since η2 being zero
requires the robot to move in a straight line while η3 being
zero requires the robot to track the desired path with a curved
trajectory. We will show how these conflicting objectives are
considered as “soft constraints” and are balanced in a QP
framework by some relaxation variables in Subsection III-C,
as well as simulation and experiment results in Section V.

For i = 1, 2, 3, to achieve exponential convergence of ηi to
zero (irrespective of other outputs), we utilize a special class
of control Lyapunov functions V (x) termed exponentially
stabilizing control Lyapunov function (ES-CLF) [24]. For the
outputs η1, η2, the control Lyapunov functions are taken as
V1(x) = (v − vd)2, V2(x) = ω2. For the output η3, because

η̇3 =

[
ẋ− Ṙpath cos(φ) + φ̇Rpath sin(φ)

ẏ − Ṙpath sin(φ)− φ̇Rpath cos(φ)

]
,

where Ṙpath = nbφ̇ cos(nφ) and φ̇ is given in (3), the output
η3 has relative degree 2. Implementing routine input-output
linearization and using the technique in [24] yields the CLF
V3(x) = [η>3 , η̇

>
3]P [η

>
3 , η̇

>
3]
>, where

P =

√
3 0 1 0

0
√
3 0 1

1 0
√
3 0

0 1 0
√
3

 .
For each Vi, i = 1, 2, 3, the set of control inputs that

exponentially stabilizes ηi is given as

Ki(x) = {u|LfVi(x) + LgVi(x)u+ ciVi(x) ≤ 0} (12)

where ci(i = 1, 2, 3) is a positive constant, which is a tunable
parameter specifying the convergence rate.

Remark 3: It is impossible to input/output linearize the
robot system (2) for the output [η1, η2, η>3]

>, because there
are only two inputs. Since the CLF condition will be treated
as “soft constraint”, different CLFs can be designed sepa-
rately to achieve their respective objective as we do above.

C. CBF-CLF-based Quadratic Programs
The CLFs and CBFs developed in preceding subsections

are unified in a QP to generate a min-norm controller:

u∗(x) = argmin
u=[ul,ua,δ1,δ2,δ3]>

uTHu (13)

s.t. Aiclf(x)u ≤ biclf(x), i = 1, 2, 3,

Aasr(x)u ≤ basr(x),
Alk(x)u ≤ blk(x),

where A1
clf(x) = [LgV1(x),−1, 0, 0], A2

clf(x) =
[LgV2(x), 0,−1, 0], A3

clf(x) = [LgV3(x), 0, 0,−1],
biclf(x) = −LfVi(x) − ciVi(x), i = 1, 2, 3, Aasr(x) =
[Lghasr(x), 0, 0, 0], basr(x) = −Lghasr(x) − γ1hasr(x),
Alk(x) = [Lghlk(x), 0, 0, 0], blk(x) = −Lghlk(x) −
γ2hlk(x), H := diag{p1, ..., p5} ∈ R5×5 are the weight
matrix with penalty weight pi > 0, γ1, γ2 are given positive
constants, and δi ≥ 0(i = 1, 2, 3) are relaxation parameters.
These relaxation variables enable us to have controllers with
different, potentially conflicting, objectives, whose priority
can be changed by tuning pi, i = 3, 4, 5, with larger value
implying more priority on that objective.

The optimization problem (13) can be solved by QP
solvers such as the quadprog function in MATLAB. The
inputs ul, ua generated are applied to (2) ensuring the robot
always satisfies the safety specifications and achieves the
performance objectives when δi are sufficiently small.

IV. CONTROLLER IMPLEMENTATION

This section explains the implementation of the adaptive
speed regulation and lane keeping control algorithms on
the Khepera and Robotarium testbeds. The implementation
differs from that of a standard vehicle because the actuators
are not “force-torque-based”, but rather, “speed-based”. The
implementations methods for both the Khepera robots and
the Robotarium follow the same general steps shown in
Figure 3, with the exception of a few noted differences.

To start, pose data on both the Khepera testbed and
the Robotarium are acquired through an overhead tracking
system and include the 2D position and orientation of each
robot. While the Khepera testbed relies on the proprietary
OptiTrack motion capture system to provide pose data using
reflective infrared markers (at 50 Hz), the Robotarium uses
a single web camera and an OpenCV-based tag tracker in
conjunction with ArUco tags (at 30 Hz). The Robotarium’s
tracker uses open-source software packages and is also freely
available at https://github.com/robotarium.

1772

Fig. 3: Flowchart describing the control generation loop in
the experimental implementation.

The acquired 2D position data represent the center position
of the robot and these values must be shifted in order
to coincide with the modified unicycle model described
in Section II. This shift is done according to xshift =
x + a cos(ψ), yshift = y + a sin(ψ). Following the shift of
coordinates, the states for each robot are assembled in the
order shown in (2). The 2D position states, x and y, are
taken from the shift calculation in the previous step, while
ψ is drawn directly from the data acquisition hardware and
φ is calculated from the position data. Longitudinal velocity
v and angular rate ω are taken from the velocity and angular
velocity control inputs sent to the robots in the previous loop.
In order to avoid a singularity in the CLF based controller on
the first loop, the longitudinal velocities of both robots are set
to their desired values, vdl and vdf , and the angular velocities
are set to zero. This initialization causes the robots to have
a nonzero positive velocity before the QP-based controller
takes full control.

The assembled states x are used to calculate the matrices
Aiclf , b

i
clf , Aasr, basr, Alk, blk of the QP (13) in Section III.

We use MATLAB’s quadprog function to solve the QP (13)
for the force and torque inputs ul, ua in real time. Because
both the Khepera and Robotarium robots receive longitudinal
and angular velocities as inputs, the force and torque control
inputs are integrated using the model’s kinematics and a
fourth-order Runge-Kutta integration method.

Linear and angular velocity inputs computed by solving
the CBF-CLF-QP (13) are converted to wheel velocities and
sent to the robots via WiFi. As noted, in the initial loop,
constant velocity commands are sent to avoid a controller sin-
gularity. Both the Khepera-based testbed and the Robotarium
rely on Matlab-based APIs to send wheel velocity commands
via UDP sockets to the robots. While velocity updates are
sent to the Khepera robots at 50 Hz, the Robotarium’s robots
receive updates at 30 Hz , which is the update rate limitation
imposed by the web camera.

V. EXPERIMENTAL RESULTS

In this section, we will demonstrate the effectiveness of
the CBF-CLF-QP controller through experiments on Khepera
robots and the Robotarium.

In order to show that the QP framework can deal with
different objectives while always ensuing the safety specifi-
cations, we let the path tracking controller for the following
robot be turned off for a period of time during the experi-
ments. Specifically, the constraint with V3 is removed from
the QP (13) when the “off” mode is conducted, and added to
the QP (13) again when the “on” mode is conducted, with
all the other constraints kept the same. By doing this, we
simulate the robot attemping to leave the lane.

The parameters for all experiments are shown in Table I,
where R, b, n are the parameters of the desired path defined
by (4), dmax is the width of the lane, τ is the time-headway
in (9) and vdf and vdl are the desired velocities for the
following and lead robots, respectively. For each experiment,
the initial conditions are the same: the following robot starts
at the position (x, y) = (R, 0), with the lead robot positioned
ahead by 25% to 50% of a path revolution, and the robots are
oriented tangent to the path at their starting positions with a
small longitudinal and zero angular velocity.

TABLE I: Experiment Parameters

Para. R b n dmax τ vdf vdl
Fig.6 0.9 0.23 3 0.15 1.8 0.2 0.1
Fig.9 0.25 0.06 3 0.04 3 0.075 0.05
Unit m m - m s m/s m/s

A. Experiments on Khepera Robots

This subsection summarizes the execution of the on/off
path tracking experiments on the Khepera robot testbed,
where CBFs hasr in (9) and hlk in (11) are used.

Figure 4 shows the value of CBFs hasr and hlk of the
following robot during the experiment, with the simulation
results depicted as well, which are run under the same
conditions. Here, the path tracking controller turns off at
t = 20s and resumes at t = 45s. As can be seen from
Figures 4, both CBFs are positive for all time, which means
that the safety specifications are always satisfied.

Figure 5 shows the value of CLFs V1, V2, V3 for the same
experiment and simulation, where penalty weights p3 = 105,
p4 = 1, and p5 = 103 are used such that the controller
put more emphasis on V1 (achieving the desired speed)
and V3 (tracking the path) while less on V2 (reducing the
angular velocity). As can be seen from Figure 5, before 20
seconds, the values of V1, V2, V3 are quite smooth; when
the tracking controller turns off at t = 20, the value of
V2, V3 fluctuates quite a bit since the penalty weight on V2 is
small and removing the constraint of V3 from the QP poses
no restriction on V3 during this period; when the tracking
controller turns on again, the value of V1, V2, V3 become
smooth again. The mismatch between the experimental and

1773

Fig. 4: Value of CBFs in the experiment and simulation
on Khepera robots. (top) Value of hlk where positiveness
implies that the robot is within the boundary. (bottom) Value
of hasr where non-negativeness implies the specification
D ≥ τvf is satisfied.

Fig. 5: Value of CLFs in the experiment and simulation on
Khepera robots. (top) Value of V1, V3. (bottom) Value of V2.

simulation data in Figure 4 and Figure 5 can be attributed
to calibration and modeling errors.

Figure 6 shows the following Khepera robot’s trajectories
based on the experimental data and one snapshot of the
experiment. It can be seen that even when the tracking
objective is removed at that point, the robot is repelled back
to the lane when it attempts to leave due to the constraint of
the lane keeping CBF.

B. Experiments on Robotarium

This subsection summarizes the execution of the on/off
path tracking experiments on the Robotarium testbed, where
CBFs hasr in (9) and hlk in (10) are used.

Figure 7 shows the value of CBFs hasr and hlk of the
following robots during the Robotarium experiment, with
the corresponding simulation results depicted as well. The
path tracking controller turns off at t = 10s and resumes
at t = 42s. As we can see from Figure 7, both CBFs are

Fig. 6: (left) Trajectories of the following Khepera robot
(blue line) during the on/off path tracking experiment. (right)
Snapshot of the Khepera experiment during the off mode.

Fig. 7: Value of CBFs in the experiment and simulation on
Robotarium with on/off path tracking CLF. (top) Value of
hlk where positiveness implies satisfaction. (bottom) Value
of hasr where non-negativeness implies satisfaction.

Fig. 8: Value of hasr in the Robotarium experiment and
simulation when the path tracking controller is turned on
for all time. Non-negativeness of hasr means satisfaction of
the adaptive speed regulation specification.

positive for all time, which means that the lane keeping and
adaptive speed regulation specifications are always satisfied.
Compared with the results on the Khepera robots in Figure
4, the value of hasr and hlk here are both noisier. This
difference is likely due to the size differences between the
two testbeds and the fact that the Robotarium runs at a lower
update rate (30Hz) than the Khepera testbed (50Hz).

As a comparison, Figure 8 shows the value of CBF
hasr when the path tracking controller is turned on for the

1774

entire experiment, with the corresponding simulation results
depicted as well. As one can see, with given model and
calibration errors, hasr remains predominantly positive for
all time, which means that the adaptive speed regulation
specification is always satisfied. Particularly, when hasr is
close to 0, the minimum time headway τ is achieved.

Figure 9 shows the following robots’ trajectories based
on the experimental data on Robotarium as well as one
snapshot of the experiment. It can be seen that the following
robot approaches the lane boundary and is repelled from the
boundary because of the lane keeping CBF.

Fig. 9: (left) Trajectories of the following robot (blue line)
on Robotarium during the on/off tracking experiment. (right)
Snapshot of the Robotarium experiment during the off mode.

In addition to the results presented above, video for
the “on/off” experiments can be found online in [25]. An
additional “decaying” experiment, which is not presented
here for the space limitation, can be also found in [25].

VI. CONCLUSIONS

In this paper, the real-time implementation of lane keeping
and adaptive speed regulation was experimentally evaluated
on two robot testbeds, based on a CBF-CLF-QP approach.
Our results showed the effectiveness of the CBF-CLF-QP
framework for multi-objective controller design with safety
constraints, and its potential for implementation on ADAS
control software. These results were achieved on accessi-
ble mobile testbeds—a key advantage of this approach is
that it provides students hands-on experience with rather
sophisticated control software where safety, in the sense of
formal methods, is a primary factor. Additional advantages
include the low cost of the experiments, and in the case
of the Robotarium, the fact that multiple groups of faculty
and students can compare results on a common platform.
The hope is that this will allow for the rapid prototyping
and deployment of safety-critical controllers among a wide
audience of researchers.

REFERENCES

[1] J. C. Knight, “Safety critical systems: challenges and directions,”
in Proceedings of the 24rd International Conference on Software
Engineering. IEEE, 2002, pp. 547–550.

[2] M. Campbell, M. Egerstedt, J. P. How, and R. M. Murray, “Au-
tonomous driving in urban environments: approaches, lessons and
challenges,” Philosophical Transactions of the Royal Society of Lon-
don A: Mathematical, Physical and Engineering Sciences, vol. 368,
no. 1928, pp. 4649–4672, 2010.

[3] K. L. Talvala, K. Kritayakirana, and J. C. Gerdes, “Pushing the limits:
From lanekeeping to autonomous racing,” Annual Reviews in Control,
vol. 35, no. 1, pp. 137–148, 2011.

[4] A. Vahidi and A. Eskandarian, “Research advances in intelligent
collision avoidance and adaptive cruise control,” IEEE Transactions on
Intelligent Transportation Systems, vol. 4, no. 3, pp. 143–153, 2003.

[5] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. Ames, J. Grizzle,
N. Ozay, H. Peng, and P. Tabuada, “Correct-by-construction adaptive
cruise control: Two approaches,” IEEE Transactions on Control Sys-
tems Technology, vol. 24, no. 4, pp. 1294–1307, 2016.

[6] X. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness
guarantees for the composition of lane keeping and adaptive cruise
control,” arXiv:1609.06807, 2016.

[7] S. Dai and X. Koutsoukos, “Safety analysis of automotive control sys-
tems using multi-modal port-hamiltonian systems,” in Hybrid Systems:
Computation and Control, 2016, pp. 105–114.

[8] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

[9] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-
case and stochastic safety verification using barrier certificates,” IEEE
Trans. on Automatic Control, vol. 52, no. 8, pp. 1415–1428, 2007.

[10] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems us-
ing barrier certificates,” in Hybrid Systems: Computation and Control,
2004, pp. 477–492.

[11] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in IEEE Conference on Decision and Control, 2014, pp. 6271–6278.

[12] X. Xu, P. Tabuada, A. D. Ames, and J. W. Grizzle, “Robustness of
control barrier functions for safety critical control,” in IFAC Conf. on
Analysis and Design of Hybrid Systems, 2015, pp. 54–61.

[13] A. Mehra, W.-L. Ma, F. Berg, P. Tabuada, J. W. Grizzle, and A. D.
Ames, “Adaptive cruise control: Experimental validation of advanced
controllers on scale-model cars,” in American Control Conference.
IEEE, 2015, pp. 1411–1418.

[14] L. Wang, A. D. Ames, and M. Egerstedt, “Multi-objective composi-
tions for collision-free connectivity maintenance in teams of mobile
robots,” in IEEE Conference on Decision and Control, 2016, pp. 2659–
2664.

[15] S.-C. Hsu, X. Xu, and A. D. Ames, “Control barrier function based
quadratic programs with application to bipedal robotic walking,” in
American Control Conference. IEEE, 2015, pp. 4542–4548.

[16] Q. Nguyen and K. Sreenath, “Optimal robust control for constrained
nonlinear hybrid systems with application to bipedal locomotion,” in
American Control Conference. IEEE, 2016, pp. 4807–4813.

[17] X. Xu, “Control sharing barrier functions with application to con-
strained control,” in IEEE Conference on Decision and Control, 2016,
pp. 4880–4885.

[18] S. G. Lee and M. Egerstedt, “Controlled coverage using time-varying
density functions,” IFAC Proceedings Volumes, vol. 46, no. 27, pp.
220–226, 2013.

[19] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The robotarium: A remotely accessible swarm robotics
research testbed,” arXiv:1604.00640, 2016.

[20] C. D. L. Cruz and R. Carelli, “Dynamic modeling and centralized
formation control of mobile robots,” in IEEE Annual Conference on
Industrial Electronics, 2006, pp. 3880–3885.

[21] F. N. Martins, M. Sarcinelli-Filho, T. F. Bastos, and R. Carelli,
“Dynamic modeling and adaptive dynamic compensation for unicycle-
like mobile robots,” in IEEE International Conference on Advanced
Robotics, 2009, pp. 1–6.

[22] D. Pickem, M. Lee, and M. Egerstedt, “The GRITSBot in its natural
habitat - a multi-robot testbed,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 4062–4067.

[23] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, 2017 (to appear).

[24] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4,
pp. 876–891, 2014.

[25] “Implementing simultaneous lane keeping and adaptive speed regula-
tion in the robotarium,” https://youtu.be/VgoEcOFwJ2M.

1775

